Not only in aviation industry but also in other industries, safety data plays a key role to improve the level of safety performance. By analyzing safety data such as aviation safety report (text data), hazard can be identified and removed before it leads to a tragic accident. However, pre-processing of raw data (or natural language data) collected from each site should be carried out first to utilize proactive or predictive safety management system. As air traffic volume increases, the amount of data accumulated is also on the rise. Accordingly, there are clear limitation in analyzing data directly by manpower. In this paper, a topic prediction model for aviation safety mandatory report is proposed. In addition, the prediction accuracy of the proposed model was also verified using actual aviation safety mandatory report data. This research model is meaningful in that it not only effectively supports the current aviation safety mandatory report analysis work, but also can be applied to various data produced in the aviation safety field in the future.
Journal of the Korean Data and Information Science Society
/
제26권5호
/
pp.1061-1069
/
2015
최근 교통 분야에서 발생하는 교통 빅데이터 (교통카드 데이터, ATMS 데이터 등)의 분석결과를 교통 정책에 활용하는 사례가 늘어나고 있는 추세이다. 또한 교통 데이터 분석 기법을 기존의 단순 빈도 분석 기법에서 다양한 데이터 마이닝 기법으로 확장하여 교통 데이터 속에 숨어있는 의미를 파악하려는 연구도 진행되고 있다. 본 연구에서는 교통카드 데이터에 대하여 토픽모델링 기법 중의 하나인 LDA (Latent Dirichlet Allocation) 기법을 적용하여 청주시 버스 승객들의 이동패턴을 분석한다. 이를 위해 교통카드 데이터의 하차 결측치를 추정하고, LDA 기법을 적용하여 이동패턴을 추출하였다. 또한 LDA 분석으로 도출된 값을 측정값으로 하여 다차원적 분석을 함으로써 청주시 버스 승객들의 이동패턴 특징을 파악할 수 있다. 분석 결과, 청주시의 경우 크게 1) 시외지역에서 터미널을 이용해 청주시에서 유입되는 패턴, 2) 주거지역에서 상업지역으로 이동하는 패턴, 3) 청주 인근 학교에서 상업 지역 (청주 중심가)로 이동하는 패턴을 발견할 수 있었다. 이동패턴은 도시 계획, 대중교통서비스 향상, 버스 노선 신설 등 다양한 교통정책의 수립에 활용될 수 있을 것으로 기대된다.
본 연구는 노인일자리사업의 사회적 논의구조를 분석하기 위해 대표적인 대중매체인 신문기사에서 다루어지는 노인일자리 관련 주요 토픽들과 시계열적 특성을 분석하였다. 이를 위해 뉴스 통합 데이터베이스인 빅카인즈에 수록된 11개 중앙지와 8개 경제지의 노인일자리사업 관련 기사 1107개에 대해 잠재디리클레할당 방법을 이용한 토픽분석을 실시해 언론 기사에 내재된 노인일자리사업의 잠재토픽을 추출하였다. 분석결과 노인일자리사업에 대한 일반적 정보전달, 지자체 사업 홍보, 노후생활, 고용효과, 시장연계 등 5개의 잠재토픽이 추출되었는데 2015년까지 대부분의 언론기사가 일반적 정보전달과 지자체 사업홍보에 국한되어 있어 노인일자리사업의 정체성에 대한 사회적 논의가 형성되지 못하였음을 알 수 있었던 반면 2015년 이후부터 노인일자리사업의 소득, 안전 등 노후생활 효과 관련 주제가 다루어지는 비중이 증가했으며 특히 문재인 정부 출범이후 고용효과와 관련된 기사가 압도적인 비중을 차지하게 되었음을 발견할 수 있었다. 본 연구는 이러한 결과에 근거해 향후 노인일자리사업의 질적측면 및 고용효과 측면을 증진시킬 수 있는 방안에 대한 고민의 필요성과 고용프레임 이외의 대안적 프레임 제시의 필요성을 제안하였다.
We propose a generative probabilistic model with Dirichlet prior distribution for topic modeling and text similarity analysis. It assigns a topic and calculates text correlation between documents within a corpus. It also provides posterior probabilities that are assigned to each topic of a document based on the prior distribution in the corpus. We then present a Gibbs sampling algorithm for inference about the posterior distribution and compute text correlation among 50 abstracts from the papers published by IEEE. We also conduct a supervised learning to set a benchmark that justifies the performance of the LDA (Latent Dirichlet Allocation). The experiments show that the accuracy for topic assignment to a certain document is 76% for LDA. The results for supervised learning show the accuracy of 61%, the precision of 93% and the f1-score of 96%. A discussion for experimental results indicates a thorough justification based on probabilities, distributions, evaluation metrics and correlation coefficients with respect to topic assignment.
Recently, a lot of accident report documents have accumulated in almost all of industries, including critical information of accidents. Accordingly, text data contained in accident report documents are considered useful information for understanding accident processes. However, there has been a lack of systematic approaches to analyzing accident report documents. In this respect, this paper aims at proposing text analytics approach to extracting critical information on accident processes. To be specific, major causes of the accident occurrence are classified based on text information contained in accident report documents by using both textmining and latent Dirichlet allocation (LDA) algorithms. The textmining algorithm is used to structure the document-term matrix and the LDA algorithm is applied to extract latent topics included in a lot of accident report documents. We extract ten topics of accidents as accident types and related keywords of accidents with respect to each accident type. The cause-and-effect diagram is then depicted as a tool for navigating processes of the accident occurrence by structuring causes extracted from LDA. Further, the trends of accidents are identified to explore patterns of accident occurrence in each of types. Three patterns of increasing to decreasing, decreasing to increasing, or only increasing are presented in the case of a chemical plant. The proposed approach helps safety managers systematically supervise the causes and processes of accidents through analysis of text information contained in accident report documents.
In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.
인터넷 웜, 컴퓨터 바이러스 등 네트워크에 위협적인 악성트래픽이 증가하고 있다. 특히 최근에는 지능형 지속 위협 공격 (APT: Advanced Persistent Threat), 랜섬웨어 등 수법이 점차 고도화되고 그 복잡성(Complexity)이 증대되고 있다. 지난 몇 년간 침입탐지시스템(IDS: Intrusion Detection System)은 네트워크 보안 솔루션으로서 중추적 역할을 수행해왔다. 침입탐지시스템의 효과적 활용을 위해서는 탐지규칙(Rule)을 적절히 작성하여야 한다. 탐지규칙은 탐지하고자 하는 악성트래픽의 핵심 시그니처를 포함하며, 시그니처를 포함한 악성트래픽이 침입탐지시스템을 통과할 경우 해당 악성트래픽을 탐지하도록 한다. 그러나 악성트래픽의 핵심 시그니처를 찾는 일은 쉽지 않다. 먼저 악성트래픽에 대한 분석이 선행되어야 하며, 분석결과를 바탕으로 해당 악성트래픽에서만 발견되는 비트패턴을 시그니처로 사용해야 한다. 만약 정상 트래픽에서 흔히 발견되는 비트패턴을 시그니처로 사용하면 수많은 오탐(誤探)을 발생시키게 될 것이다. 본고에서는 네트워크 트래픽을 분석하여 핵심 시그니처를 추출하는 기법을 제안한다. 제안 기법은 LDA(Latent Dirichlet Allocation) 알고리즘을 활용하여, 어떠한 네트워크 트래픽에 포함된 시그니처가 해당 트래픽을 얼마나 대표하는지를 정량화한다. 대표성이 높은 시그니처는 해당 네트워크 트래픽을 탐지할 수 있는 침입탐지시스템의 탐지규칙으로 활용될 수 있다.
대한원격탐사학회지는 국내 원격탐사 분야를 대표하는 학술지로 원격탐사를 바탕으로 다학제 간 융합연구를 통해 수행된 다양한 분야의 연구논문들이 게재되고 있다. 본 연구는 대한원격탐사학회지에 게재된 논문을 바탕으로 토픽모델링을 수행하여 원격탐사 분야의 역사와 발전에 대해 논의하고자 한다. 1985년부터 2021년까지 총 1,847편의 논문 제목, 주제어, 다국어 초록을 수집하였다. 대한원격탐사학회지의 전반적인 연구 동향과 자연·환경재해 분야의 연구동향을 확인하기 위해 Latent Dirichlet Allocation (LDA)를 수행하였으며, 연구주제를 분류하고 연구동향을 확인하였다. 대한원격탐사학회지 전체 논문을 대상으로 LDA를 수행한 결과 4개의 연구주제('극권', '수권', '지권', '기권')로 분류할 수 있었으며, 시간에 따라 '기권'과 관련된 연구주제들이 성행하는 것을 확인하였다(linear slope=3.51 × 10-3, p< 0.05). 전체 논문 중 자연·환경재해 분야를 대상으로 LDA를 수행한 결과 7개의 연구주제('해양 오염', '대기 오염', '화산재해', '산불', '홍수', '가뭄', '폭우')로 분류할 수 있었으며, 시간에 따라 '대기 오염'과 관련된 연구주제들이 성행하는 것을 확인하였다(linear slope=2.61 × 10-3, p<0.05). 본 연구의 결과는 원격탐사를 다루는 다양한 분야의 연구자들에게 원격탐사 분야와 자연·환경재해 분야의 역사와 발전에 대한 이해를 제공했음에 의의가 있다.
국내 지질학의 연구 분야는 20세기 중반 이후부터 꾸준하게 발전되어왔다. 학술지 "자원환경지질"은 국내 지질학을 대표하는 역사가 긴 학술지로 지질학을 바탕으로 하는 융복합연구 논문이 게재되고 있다. 본 연구는 학술지 "자원환경지질"에 게재된 논문을 대상으로 문헌 고찰(literature review)을 수행하여 지질학의 역사와 발전에 대해 논의하고자 한다. 1968년부터 2020년까지 총 2,571편의 논문 제목, 주제어, 다국어 초록을 수집하였으며, Latent Dirichlet Allocation (LDA) 기반 토픽모델링을 실시하여 연구 주제를 분류하고 연구 동향과 주제간 연관성을 확인하였다. 학술지 "자원환경지질"은 총 8개의 연구주제('암석학 및 지구화학', '수문학 및 수리지질학', '광상학', '화산학', '토양오염 및 복원학', '기초지질 및 구조지질학', '지구물리 및 물리탐사', '점토광물')로 분류할 수 있었다. 1994년 이전에는 '광상학', '화산학', '기초지질 및 구조지질학'의 연구주제들이 활발하게 연구되었으며, 이후 '수문학 및 수리지질학', '토양오염 및 복원학', '지구물리 및 물리탐사', '점토광물'의 연구주제들이 성행하였다. 연관성분석(network analysis)결과, 학술지 "자원환경지질"은 '광상학'을 기반으로 융복합적 연구 논문들이 게재되었다는 것을 확인하였다. 본 연구의 결과는 지질학을 다루는 연구자들에게 문헌 고찰의 새로운 방법론을 제시하여 지질학의 역사에 대한 이해를 제공했음에 의의가 있다.
본 연구는 빅데이터를 활용하여 감사 시 유의해서 살펴보아야 할 ITS 관련 정책이슈 탐색방법 개발 및 적용을 목적으로 한다. 이를 위해 본 연구에서는 William Dunn이 제안한 경계분석을 이론적 토대로 하여, 여기에 감사원 감사실무 프로세스를 접목한 감사이슈 분석 틀을 제안했다. 그리고 이 분석 틀을 전산으로 구현하기 위해 메타문제를 추정하는 개념이 경계분석과 유사한 텍스트마이닝 기법을 응용했다. 텍스트마이닝의 구체적 모형은 David Blei가 제안한 Latent Dirichlet Allocation(LDA) 모형을 기반으로 하는 비대칭-대칭 혼합 어휘소 기반 LDA를 응용했다. 사례분석 결과, 경찰청에서 운영하는 도시교통정보시스템의 교통정보 수집률 저조와 국토교통부의 첨단교통관리시스템과의 중복 문제, 디지털 운행기록계의 주행거리 조작 등이 주요 이슈로 도출됐다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.