• Title/Summary/Keyword: Latent class model

Search Result 72, Processing Time 0.024 seconds

Latent Class Analysis for Mode Choice Behavior (잠재계층분석에 따른 수단선택모형비교분석)

  • Bae, Yun-Gyeong;Jeong, Jin-Hyeok;Kim, Hyeong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.99-107
    • /
    • 2010
  • Analyzing mode choice among transportation demand estimate procedures is complicated and understanding characteristics of travelers is also difficult. Generally, it is well known that traveler choose mode considering psychometric factors and characteristic besides socio-demographic indicators. Accordingly, many researches has investigated on methodology that can be applied in mode choice to reflect psychometric factor or specific preference. Latent Class Analysis among various studies is recognized as the theoretically potential approach. This study focuses on class segmented using latent class cluster to analyze impact that included psychometric factors and characteristics on mode choice. It also provides evidence that mode choice model for each class and mode choice model not considering latent class are different. This study based on citizen's stated preference and revealed preference on a new transit on the Han river shows that latent class cluster analysis is the potential approach considering latent preference.

Latent class analysis with multiple latent group variables

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.173-191
    • /
    • 2017
  • This study develops a new type of latent class analysis (LCA) in order to explain the associations between one latent variable and several other categorical latent variables. Our model postulates that the prevalence of the latent variable of interest is affected by another latent variable composed of other several latent variables. For the parameter estimation, we propose deterministic annealing EM (DAEM) to deal with local maxima problem in the proposed model. We perform simulation study to demonstrate how DAEM can find the set of parameter estimates at the global maximum of the likelihood over the repeated samples. We apply the proposed LCA model in an investigation of the effect of and joint patterns for drug-using behavior to violent behavior among US high school male students using data from the Youth Risk Behavior Surveillance System 2015. Considering the age of male adolescents as a covariate influencing violent behavior, we identified three classes of violent behavior and three classes of drug-using behavior. We also discovered that the prevalence of violent behavior is affected by the type of drug used for drug-using behavior.

Bayesian Clustering of Prostate Cancer Patients by Using a Latent Class Poisson Model (잠재그룹 포아송 모형을 이용한 전립선암 환자의 베이지안 그룹화)

  • Oh Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2005
  • Latent Class model has been considered recently by many researchers and practitioners as a tool for identifying heterogeneous segments or groups in a population, and grouping objects into the segments. In this paper we consider data on prostate cancer patients from Korean National Cancer Institute and propose a method for grouping prostate cancer patients by using latent class Poisson model. A Bayesian approach equipped with a Markov chain Monte Carlo method is used to overcome the limit of classical likelihood approaches. Advantages of the proposed Bayesian method are easy estimation of parameters with their standard errors, segmentation of objects into groups, and provision of uncertainty measures for the segmentation. In addition, we provide a method to determine an appropriate number of segments for the given data so that the method automatically chooses the number of segments and partitions objects into heterogeneous segments.

Analysis of the Effect in Mathematics Teachers Beliefs on their Students Beliefs by Latent Class Regression Model (잠재집단회귀모델(LCRM)을 통한 학생의 수학적 신념에 대한 교사의 수학적 신념 영향분석)

  • Kang, Sung Kwon;Hong, Jin-Kon
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.485-506
    • /
    • 2020
  • The purpose of this study is to analyze of the effect in Mathematics Teachers beliefs on their students beliefs by Latent Class Regression Model (LCRM). For this analysis, the study used the findings and surveys of Kang, Hong (2020) who developed a belief profile by analyzing the mathematical beliefs of 60 high school teachers and 1,850 second-year high school students learning from them through the Latent Class Analysis (LCA). As a result It was observed that 'Nature of Mathematics', 'Mathematic Teaching' and 'Mathematical Ability' of mathematics teachers beliefs influence the mathematical beliefs of students. The teacher's belief of 'Nature of Mathematics' statistically significant effects on students' beliefs in 'School Mathematics', 'Problem Solving', 'Mathematics Learning'. The teacher's belief of 'Teaching Mathematics', 'Mathematical Ability' statistically significant effects on students' beliefs in 'School Mathematics', 'Problem Solving', 'Self-Concept'. The results of this study can give a preview of the phenomenon in which teacher's mathematical beliefs are reproduced into student's mathematical beliefs. In addition, the results of observation of this study can be used to the contents that can achieve the purpose of reorientation for mathematics teachers.

Segmentation of Movie Consumption : An Application of Latent Class Analysis to Korean Film Industry (잠재계층분석기법(Latent Class Analysis)을 활용한 영화 소비자 세분화에 관한 연구)

  • Koo, Kay-Ryung;Lee, Jang-Hyuk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.4
    • /
    • pp.161-184
    • /
    • 2011
  • As movie demands become more and more diversified, it is necessary for movie related firms to segment a whole heterogeneous market into a number of small homogeneous markets in order to identify the specific needs of consumer groups. Relevant market segmentation helps them to develop valuable offer to target segments through effective marketing planning. In this article, we introduce various segmentation methods and compare their advantages and disadvantages. In particular, we analyze "2009~2010 consumer survey data of Korean Film Industry" by using Latent Class Analysis(LCA), a statistical segmentation method which identifies exclusive set of latent classes based on consumers' responses to an observed categorical and numerical variables. It is applied PROC LCA, a new SAS procedure for conducting LCA and finally get the result of 11 distinctive clusters showing unique characteristics on their buying behaviors.

A New Latent Class Model for Analysis of Purchasing and Browsing Histories on EC Sites

  • Goto, Masayuki;Mikawa, Kenta;Hirasawa, Shigeichi;Kobayashi, Manabu;Suko, Tota;Horii, Shunsuke
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.335-346
    • /
    • 2015
  • The electronic commerce site (EC site) has become an important marketing channel where consumers can purchase many kinds of products; their access logs, including purchase records and browsing histories, are saved in the EC sites' databases. These log data can be utilized for the purpose of web marketing. The customers who purchase many product items are good customers, whereas the other customers, who do not purchase many items, must not be good customers even if they browse many items. If the attributes of good customers and those of other customers are clarified, such information is valuable as input for making a new marketing strategy. Regarding the product items, the characteristics of good items that are bought by many users are valuable information. It is necessary to construct a method to efficiently analyze such characteristics. This paper proposes a new latent class model to analyze both purchasing and browsing histories to make latent item and user clusters. By applying the proposal, an example of data analysis on an EC site is demonstrated. Through the clusters obtained by the proposed latent class model and the classification rule by the decision tree model, new findings are extracted from the data of purchasing and browsing histories.

PERFORMANCE EVALUATION OF INFORMATION CRITERIA FOR THE NAIVE-BAYES MODEL IN THE CASE OF LATENT CLASS ANALYSIS: A MONTE CARLO STUDY

  • Dias, Jose G.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.435-445
    • /
    • 2007
  • This paper addresses for the first time the use of complete data information criteria in unsupervised learning of the Naive-Bayes model. A Monte Carlo study sets a large experimental design to assess these criteria, unusual in the Bayesian network literature. The simulation results show that complete data information criteria underperforms the Bayesian information criterion (BIC) for these Bayesian networks.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Classification of latent classes and analysis of influencing factors on longitudinal changes in middle school students' mathematics interest and achievement: Using multivariate growth mixture model (중학생들의 수학 흥미와 성취도의 종단적 변화에 따른 잠재집단 분류 및 영향요인 탐색: 다변량 성장혼합모형을 이용하여)

  • Rae Yeong Kim;Sooyun Han
    • The Mathematical Education
    • /
    • v.63 no.1
    • /
    • pp.19-33
    • /
    • 2024
  • This study investigates longitudinal patterns in middle school students' mathematics interest and achievement using panel data from the 4th to 6th year of the Gyeonggi Education Panel Study. Results from the multivariate growth mixture model confirmed the existence of heterogeneous characteristics in the longitudinal trajectory of students' mathematics interest and achievement. Students were classified into four latent classes: a low-level class with weak interest and achievement, a high-level class with strong interest and achievement, a middlelevel-increasing class where interest and achievement rise with grade, and a middle-level-decreasing class where interest and achievement decline with grade. Each class exhibited distinct patterns in the change of interest and achievement. Moreover, an examination of the correlation between intercepts and slopes in the multivariate growth mixture model reveals a positive association between interest and achievement with respect to their initial values and growth rates. We further explore predictive variables influencing latent class assignment. The results indicated that students' educational ambition and time spent on private education positively affect mathematics interest and achievement, and the influence of prior learning varies based on its intensity. The perceived instruction method significantly impacts latent class assignment: teacher-centered instruction increases the likelihood of belonging to higher-level classes, while learner-centered instruction increases the likelihood of belonging to lower-level classes. This study has significant implications as it presents a new method for analyzing the longitudinal patterns of students' characteristics in mathematics education through the application of the multivariate growth mixture model.

Latent causal inference using the propensity score from latent class regression model (잠재범주회귀모형의 성향점수를 이용한 잠재변수의 원인적 영향력 추론 연구)

  • Lee, Misol;Chung, Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.615-632
    • /
    • 2017
  • Unlike randomized trial, statistical strategies for inferring the unbiased causal relationship are required in the observational studies. The matching with the propensity score is one of the most popular methods to control the confounders in order to evaluate the effect of the treatment on the outcome variable. Recently, new methods for the causal inference in latent class analysis (LCA) have been proposed to estimate the average causal effect (ACE) of the treatment on the latent discrete variable. They have focused on the application study for the real dataset to estimate the ACE in LCA. In practice, however, the true values of the ACE are not known, and it is difficult to evaluate the performance of the estimated the ACE. In this study, we propose a method to generate a synthetic data using the propensity score in the framework of LCA, where treatment and outcome variables are latent. We then propose a new method for estimating the ACE in LCA and evaluate its performance via simulation studies. Furthermore we present an empirical analysis based on data form the 'National Longitudinal Study of Adolescents Health,' where puberty as a latent treatment and substance use as a latent outcome variable.