• Title/Summary/Keyword: Latent Keyphrase

Search Result 3, Processing Time 0.009 seconds

Latent Keyphrase Extraction Using Deep Belief Networks

  • Jo, Taemin;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.153-158
    • /
    • 2015
  • Nowadays, automatic keyphrase extraction is considered to be an important task. Most of the previous studies focused only on selecting keyphrases within the body of input documents. These studies overlooked latent keyphrases that did not appear in documents. In addition, a small number of studies on latent keyphrase extraction methods had some structural limitations. Although latent keyphrases do not appear in documents, they can still undertake an important role in text mining because they link meaningful concepts or contents of documents and can be utilized in short articles such as social network service, which rarely have explicit keyphrases. In this paper, we propose a new approach that selects qualified latent keyphrases from input documents and overcomes some structural limitations by using deep belief networks in a supervised manner. The main idea of this approach is to capture the intrinsic representations of documents and extract eligible latent keyphrases by using them. Our experimental results showed that latent keyphrases were successfully extracted using our proposed method.

Latent Keyphrase Extraction Using LDA Model (LDA 모델을 이용한 잠재 키워드 추출)

  • Cho, Taemin;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.180-185
    • /
    • 2015
  • As the number of document resources is continuously increasing, automatically extracting keyphrases from a document becomes one of the main issues in recent days. However, most previous works have tried to extract keyphrases from words in documents, so they overlooked latent keyphrases which did not appear in documents. Although latent keyphrases do not appear in documents, they can undertake an important role in text summarization and information retrieval because they implicate meaningful concepts or contents of documents. Also, they cover more than one fourth of the entire keyphrases in the real-world datasets and they can be utilized in short articles such as SNS which rarely have explicit keyphrases. In this paper, we propose a new approach that selects candidate keyphrases from the keyphrases of neighbor documents which are similar to the given document and evaluates the importance of the candidates with the individual words in the candidates. Experiment result shows that latent keyphrases can be extracted at a reasonable level.

Multi-cue Integration for Automatic Annotation (자동 주석을 위한 멀티 큐 통합)

  • Shin, Seong-Yoon;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.151-152
    • /
    • 2010
  • WWW images locate in structural, networking documents, so the importance of a word can be indicated by its location, frequency. There are two patterns for multi-cues ingegration annotation. The multi-cues integration algorithm shows initial promise as an indicator of semantic keyphrases of the web images. The latent semantic automatic keyphrase extraction that causes the improvement with the usage of multi-cues is expected to be preferable.

  • PDF