• Title/Summary/Keyword: Latent Heat Flux

Search Result 126, Processing Time 0.026 seconds

Heat and Flow Characteristics During Melting Process of a PCM Inside a Liquid Flexitank for Cargo Containers (화물 컨테이너용 액상 백 내부 PCM의 용융 과정에 대한 열유동 특성 해석)

  • Lilong Sun;Joon Hyun Kim;Jaehoon Na;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.6-17
    • /
    • 2024
  • This study examined the natural convection heat flow characteristics of the melting process of PCM (palm oil) inside a liquid flexitank(bag) for a cargo container. A film heating element was installed on the bottom of the container, and numerical analysis was performed under heat flux conditions of 1,000 to 4,000 W/m2. As a result, the melt interface of the PCM rises to a nearly horizontal state over time. In the initial stage, conduction heat transfer dominates, but gradually waves at the cell flow and melt interfaces are formed due to natural convection heat transfer. As melting progresses, the Ra number increases parabolically, and the Nu number increases linearly and has a constant value. The Nu number rises slowly under low heat flux conditions, whereas under high heat flux conditions, the Nu number rises rapidly. As the heat flux increases, the internal temperature oscillation of the liquid phase after melting increases. However, under high heat flux conditions, excess heat exceeding the latent heat is generated, and the temperature of the molten liquid is raised, so the increase in melting rate decreases. Therefore, the appropriate heating element specification applied to a 20-ton palm oil container is 2,000 W/m2.

On the Thermal Effect of Vegetation Canopy to the Surface Sublayer Environment Part 1 : Numerical Experiment (Vegetation Canopy의 접지층 환경에 대한 열적 영향 제1부 : 수치실험)

  • 진병화;황수진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • To estimate the thermal effect of the vegetation canopy on the surface sublayer environment numerically, we used the combined model of Pielke's1) single layer model for vegetation and Deardorff's2) Force restore method(FRM) for soil layer. Application of present combined model to three surface conditions, ie., unsaturated bare soil, saturated bare soil and saturated vegetation canopy, showed followings; The diurnal temperature range of saturated vegetation canopy is only 20K, while saturated bare soil and unsaturated bare soil surface are 30K, 35K, respectively. The maximum temperature of vegetation canopy occurs at noon, about 2 hours earlier than that of the non-vegetation cases. The peak latent heat fluxes of vegetation canopy is simulated as a 600Wm-2 at 1300 LST. They have higher values during afternoon than beforenoon. Furthermore, the energy redistribution ratios to latent heat fluxes also increased in the late afternoon. Therefore, oasis effect driving from the vegetation canopy is reinforced during late afternoon compared with the non-vegetated conditions.

  • PDF

Flow Condensation Heat Transfer Coefficients of Pure Refrigerants (순수냉매의 흐름응축 열전달계수)

  • 김신종;송길홍;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-183
    • /
    • 2002
  • Flow Condensation heat transfer coefficients (HTCs) of Rl2, R22, R32, Rl23, Rl25, R134a, R142b were measured experimentally on a horizontal plain tube. The experi- mental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in a refrigerant loop was made of a copper tube of 8.8 mm inner diameter and 1000 mm length respectively. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. All tests were performed at a filed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, 300 kg/$m^2$s. The experimental result showed that flow condensation HTCs increase as the quality, mass flux, and latent heat of condensation increase. At the same mass flux, the HTCs of R32 and R142b were higher than those of R22 by 35~45% and 7~14% respectively while HTCs of R134a and Rl23 were similar to those of R22. On the other hand, HTCs of Rl25 and Rl2 were lower than those of R22 by 28 ~30% and 15 ~25% respectively Finally, a new correlation for flow condensation HTCs was developed by modifying Dobson and Chato's correlation with the latent heat of condensation considered. The correlaton showed an average deviation of 13.1% for all pure fluids data indicating an excellent agreement.

Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul (열수지를 활용한 서울시 열환경 개선을 위한 공간 유형화)

  • Kwon, You Jin;Ahn, Saekyul;Lee, Dong Kun;Yoon, Eun Joo;Sung, Sunyong;Lee, Kiseung
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.109-126
    • /
    • 2018
  • The purpose of this study is to identify the spatial types for thermal environment improvement considering heat flux and its spatial context through empirical orthodox formulas. First, k-means clustering was used to classify values of three kinds of heat flux - latent, sensible and storage heat. Next, from the k-means clustering, we defined a type of thermal environment (type LHL) where improvement is needed for more comfortable and pleasant thermal environment in the city, among the eight types. Lastly, we compared and analyzed the characteristics of each classified thermal environmental types based on land cover types. From the study, we found that the ratio of impervious surfaces, roads, and buildings of the type LHL is higher than those of the type HLH (relatively thermal comfort environment). In order to improve the thermal environment, the following contents are proposed to urban planners and designers depending on the results of the study. a) Increase the green zone rate by 10% to reduce sensible heat; b) Reduce the percentage of impermeable surfaces and roads by 10% ; c) Latent heat increases when water and green spaces are expanded. This study will help to establish a minimum criterion for a land cover rate for the improvement of the urban thermal environment and a standard index for the thermal environmental improvement can be derived.

VARIABILITY OF THE LATENT HEAT FLUX DURING 1988-2005

  • Iwasaki, Shinsuke;Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.289-292
    • /
    • 2008
  • Recently, several satellite data analyses projects and numerical weather prediction (NWP) reanalysis projects have produced the ocean surface Latent Heat Flux (LHF) data sets in the global coverage. Comparisons of these LHF data sets showed substantial discrepancies in the LHF values. Recently, the increase of LHF in during 1970s-1990s over the global ocean is shown by the LHF data that have been developed at the Objective Analyzed Air-Sea Fluxes (OAFlux) project. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. In this study, we assessed the consistencies and discrepancies of the inter-annual variability and decadal trend for the period 1988-2005 among six LHF products ((J-OFURO2, HOAPS3, IFREMER, NCEP1,2 and OAFlux) over the global ocean. As results, all LHF products showed a positive trend. In particular, the positive trend in satellite-based data analyses (J-OFURO2, HOAPS3, IFREMER) is larger than that in reanalysis products (NCEP1/2). Also, the consistencies and discrepancies are shown on the spatial patterns of the LHF trends across the six data sets. The positive trend of LHF is remarkable in the regions of western boundary currents such as the Kuroshio and the Gulf Stream in all LHF data sets. But, the discrepancies are shown on the spatial patterns of the LHF trends in tropics and subtropics. These discrepancies are primarily caused by the differences of the input meteorological state variables, particularly for the air specific humidity, used to calculate LHF.

  • PDF

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact (비균질 도시 지표에서 측정된 에디 공분산 난류 플럭스의 불확실성 분석: 좌표계 편향 영향)

  • Lee, Doo-Il;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.473-482
    • /
    • 2016
  • An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.

Meteorological Data Integrity for Environmental Impact Assessment in Yongdam Catchment (용담댐시험유역 환경영향평가의 신뢰수준 향상을 위한 기상자료의 품질검정)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.981-988
    • /
    • 2020
  • This study presents meteorological data integrity to improve environmental quality assessment in Yongdam catchment. The study examines both extreme ranges of meteorological data measurements and data reliability which include maximum and minimum temperature, relative humidity, dew point temperature, radiation, heat flux. There were some outliers and missing data from the measurements. In addition, the latent heat flux and sensible heat flux data were not reasonable and evapotranspiration data did not match at some points. The accuracy and consistency of data stored in a database for the study were secured from the data integrity. Users need to take caution when using meteorological data from the Yongdam catchment in the preparation of water resources planning, environmental impact assessment, and natural hazards analysis.

Validation of Net Radiation Measured from Fluxtower Based on Eddy Covariance Method: Case Study in Seolmacheon and Cheongmicheon Watersheds (에디공분산 방법 기반의 플럭스 타워 순 복사에너지 검증: 설마천, 청미천 유역)

  • Byun, Kyuhyun;Shin, Jiyae;Lee, Yeon-Kil;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.111-122
    • /
    • 2013
  • The necessity of clear understanding of water and energy cycles has been attracted recently due to the climate change. The micrometeorological flux tower networks play a role of cornerstone of the hydrological and ecological analyses. Although the eddy covariance techniques used for flux tower have been proven to be applicable for estimation of latent heat flux, the raw data are often underestimated and needs to be corrected. Among several methods, the Bowen ratio is recognized as the most useful method in which the net radiation and other flux data (Ground heat flux, Sensible heat flux) are used and needed to be validated. In this study, in order to validate the net radiation from flux tower in Seolmacheon and Cheongmicheon watersheds, we compare it with two version of calculated net radiation: (1) FAO 56 Daily net radiation proposed by Allen et al. (1998). (2) Instantaneous net radiation proposed by Bastiaanssen (1995). The results showed that the net radiation from the flux data had similar tendency with those calculated based on physical theory. In addition, after it was applied to Bowen ratio method, the corrected latent heat flux was considerably improved with making the energy balance much more closed.