• Title/Summary/Keyword: Latency of Packet

Search Result 243, Processing Time 0.026 seconds

Analytical Modelling and Heuristic Algorithm for Object Transfer Latency in the Internet of Things (사물인터넷에서 객체전송지연을 계산하기 위한 수리적 모델링 및 휴리스틱 알고리즘의 개발)

  • Lee, Yong-Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • This paper aims to integrate the previous models about mean object transfer latency in one framework and analyze the result through the computational experience. The analytical object transfer latency model assumes the multiple packet losses and the Internet of Things(IoT) environment including multi-hop wireless network, where fast re-transmission is not possible due to small window. The model also considers the initial congestion window size and the multiple packet loss in one congestion window. Performance evaluation shows that the lower and upper bounds of the mean object transfer latency are almost the same when both transfer object size and packet loss rate are small. However, as packet loss rate increases, the size of the initial congestion window and the round-trip time affect the upper and lower bounds of the mean object transfer latency.

Analytical model for mean web object transfer latency estimation in the narrowband IoT environment (협대역 사물 인터넷 환경에서 웹 객체의 평균 전송시간을 추정하기 위한 해석적 모델)

  • Lee, Yong-Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • This paper aims to present the mathematical model to find the mean web object transfer latency in the slow-start phase of TCP congestion control mechanism, which is one of the main control techniques of Internet. Mean latency is an important service quality measure of end-user in the network. The application area of the proposed latency model is the narrowband environment including multi-hop wireless network and Internet of Things(IoT), where packet loss occurs in the slow-start phase only due to small window. The model finds the latency considering initial window size and the packet loss rate. Our model shows that for a given packet loss rate, round trip time and initial window size mainly affect the mean web object transfer latency. The proposed model can be applied to estimate the mean response time that end user requires in the IoT service applications.

Congestion Control Mechanism for Efficient Network Environment in WMSN (무선 멀티미디어 센서 네트워크에서 효율적인 네트워크 환경을 위한 혼잡 제어 메커니즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Oh, Won-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • Wireless multimedia sensor network senses and transfers mass multimedia data. Also, it is sensitive to latency. This thesis proposes a routing technique based on traffic priority in order to improve the network efficiency by minimizing latency. In addition, it proposes a congestion control mechanism that uses packet service time, packet inter-arrival time, buffer usage, etc. In this thesis, we verified the reduction of packet latency in accordance with the quality level of packet as a result of the performance analysis through the simulation method. Also, we verified that the proposed mechanism maintained a reliable network state by preventing packet loss due to network overload.

Performance Analysis of Fair Packet Schedulers in Bandwidth Utilization (대역폭 이용도 측면에서 공정 패킷 스케줄러의 성능 분석)

  • Ahn Hyo-Beom;Kim Tae-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.197-207
    • /
    • 2006
  • When the latency of a flow in a fair packet scheduler, which is determined by its rate, violates its required delay bound, the scheduler should reduce the latency with even raising the rate being reserved for the flow. The excessively reserved rate win enforce some outgoing link bandwidth be lost. This loss can not be, unfortunately, evaluated by the three metrics of latency, fairness and implementation complexity used in previous works. This paper is aimed to first introduce the metric of bandwidth utilization to investigate the bandwidth loss in a scheduler and then evaluate the timestamp based schedulers in terms of the bandwidth and payload utilizations. The results show that the bandwidth utilization increases with loosing the required delay bound and, in particular, schedulers with the latency property of WFQ have much better payload utilization by up to 50% than that in the SCFQ one.

  • PDF

A study on Packet Losses for Guaranteering Response Time of Service (서비스 응답시간 보장을 위한 패킷 손실에 관한 연구)

  • Kim Tae-Kyung;Seo Hee-Seok;Kim Hee-Wan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • To guarantee the quality of service for user request, we should consider various kinds of things. The important thing of QoS is that response time of service is transparently suggested 'to network users. We can know the response time of service using the information of network latency, system latency, and software component latency, In this paper, we carried out the modeling of network latency and analyzed the effects of packets loss to the network latency, Also, we showed the effectiveness of modeling using the NS-2. This research can help to provide the effective methods in case of SLA(Service Level Agreement) agreement between service provider and user.

  • PDF

Modeling TCP Loss Recovery Latency for the Number of Retransmissions (재전송 개수를 고려한 TCP 손실 복구 과정의 지연 모델링 및 분석)

  • 김동민;김범준;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12B
    • /
    • pp.1106-1114
    • /
    • 2003
  • Several analytic models describe transmission control protocol (TCP) performance such as steady-state throughput as an averaged ratio of number of transmissions to latency. For more detailed analysis of TCP latency, the latency during packet losses are recovered should be considered. In this paper, we derive the expected duration of loss recovery latency considering the number of packet losses recovered by retransmissions. Based on the numerical results verified by simulations, TCP using selective acknowledgement (SACK) option is more effective than TCP NewReno from the aspect of loss recovery latency.

Low Handover Latency for WiBro Network

  • Tae Ryoo-Kyoo;Park Se-Jun;Roh Jae-Hoon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.43-46
    • /
    • 2006
  • IEEE 802.16 WirelessMAN aiming to broadband wireless access (BWA) is evolving to 4G mobile communication system through the standardization of IEEE 802.16e supporting mobility on existing fixed WirelessMAN system. It is necessary for hand-over to provide seamless data service while MS (Mobile Station) moves to another BS (Base Station). Because the performance of handover affects packet loss or delay of any communications, it must consider low latency handover mechanism in packet based network. In this paper, we describes handover scheme of IEEE 802.16e with the cell edge interference problem and shows the way to solve the problem in frequency reuse one deployment. Our scheme reduces the handover latency and packet loss probability.

  • PDF

Ethernet-Based Avionic Databus and Time-Space Partition Switch Design

  • Li, Jian;Yao, Jianguo;Huang, Dongshan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.286-295
    • /
    • 2015
  • Avionic databuses fulfill a critical function in the connection and communication of aircraft components and functions such as flight-control, navigation, and monitoring. Ethernet-based avionic databuses have become the mainstream for large aircraft owning to their advantages of full-duplex communication with high bandwidth, low latency, low packet-loss, and low cost. As a new generation aviation network communication standard, avionics full-duplex switched ethernet (AFDX) adopted concepts from the telecom standard, asynchronous transfer mode (ATM). In this technology, the switches are the key devices influencing the overall performance. This paper reviews the avionic databus with emphasis on the switch architecture classifications. Based on a comparison, analysis, and discussion of the different switch architectures, we propose a new avionic switch design based on a time-division switch fabric for high flexibility and scalability. This also merges the design concept of space-partition switch fabric to achieve reliability and predictability. The new switch architecture, called space partitioned shared memory switch (SPSMS), isolates the memory space for each output port. This can reduce the competition for resources and avoid conflicts, decrease the packet forwarding latency through the switch, and reduce the packet loss rate. A simulation of the architecture with optimized network engineering tools (OPNET) confirms the efficiency and significant performance improvement over a classic shared memory switch, in terms of overall packet latency, queuing delay, and queue size.

On Sensor Network Routing for Cloaking Source Location Against Packet-Tracing

  • Tscha, Yeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.213-224
    • /
    • 2009
  • Most of existing routing methods in wireless sensor networks to counter the local eavesdropping-based packet-tracing deal with a single asset and suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. Recently, the author proposed a routing method, GSLP-w(GPSR-based Source-Location Privacy with crew size w), that enhances location privacy of the packet-originating node(i.e., active source) in the presence of multiple assets, yet taking a path of not too long. In this paper, we present a refined routing(i.e., next-hop selection) procedure of it and empirically study privacy strength and delivery latency with varying the crew size w(i.e., the number of packets being sent per path). It turns out that GSLP-w offers the best privacy strength when the number of packets being sent per path is randomly chosen from the range [$1,h_{s-b}/4$] and that further improvements on the privacy are achieved by increasing the random walk length TTLrw or the probability prw that goes into random walk(where, $h_{s-b}$ is the number of hops of the shortest path between packet-originating node s and sink b).

Implementation of Class-Based Low Latency Fair Queueing (CBLLFQ) Packet Scheduling Algorithm for HSDPA Core Network

  • Ahmed, Sohail;Asim, Malik Muhammad;Mehmood, Nadeem Qaisar;Ali, Mubashir;Shahzaad, Babar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.473-494
    • /
    • 2020
  • To provide a guaranteed Quality of Service (QoS) to real-time traffic in High-Speed Downlink Packet Access (HSDPA) core network, we proposed an enhanced mechanism. For an enhanced QoS, a Class-Based Low Latency Fair Queueing (CBLLFQ) packet scheduling algorithm is introduced in this work. Packet classification, metering, queuing, and scheduling using differentiated services (DiffServ) environment was the points in focus. To classify different types of real-time voice and multimedia traffic, the QoS provisioning mechanisms use different DiffServ code points (DSCP).The proposed algorithm is based on traffic classes which efficiently require the guarantee of services and specified level of fairness. In CBLLFQ, a mapping criterion and an efficient queuing mechanism for voice, video and other traffic in separate queues are used. It is proved, that the algorithm enhances the throughput and fairness along with a reduction in the delay and packet loss factors for smooth and worst traffic conditions. The results calculated through simulation show that the proposed calculations meet the QoS prerequisites efficiently.