• 제목/요약/키워드: Late injection

검색결과 151건 처리시간 0.021초

직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구 (A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine)

  • 인병덕;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

직접분사식 가솔린 엔진에서 분사시기와 흡입유동이 실린더 내 연료의 거동에 미치는 영향 (Effects of Injection Timing and Intake Flow on In-Cylinder Fuel Behavior in a GDI Engine)

  • 이정훈;강정중;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.7-13
    • /
    • 2003
  • The purpose of this study is to investigate the effect of the in-cylinder flows and different injection timings on fuel behavior in the cylinder of a GDI engine. Three different flows types induced by using masked port, unmasked port, and port deactivation were tumble, swirl&tumble, and high swirl respectively. LIEF technique was applied to investigate the mixture formation and fuel distribution at ignition time in the transparent engine with optical access through the piston top and upper part of cylinder liner. Injection timings of 180,90, and 60 degrees before TDC were examined. It was found that tumble flow was more effective on the homogeneous mixture formation than other flow and swirl flow transported more fuel vapor to the exhaust side at early injection mode, and swirl and swirl & tumble flow made fuel vapor concentrate around the cylinder center at late injection mode.

세포교정영양요법(OCNT)을 이용한 골다공증 환자 사례 연구 (A Case Study on an Osteoporosis Patient Using Ortho-Cellular Nutrition Therapy (OCNT))

  • 차명진
    • 셀메드
    • /
    • 제13권12호
    • /
    • pp.47.1-47.8
    • /
    • 2023
  • Objective: A case report on the improvement of symptoms in an osteoporosis patient using ortho-cellular nutrition therapy Methods: Currently a 70 years old Korean woman was diagnosed with osteoporosis in her late 50s around 2010 and continued to receive injection treatments once every three months. Her T-score did not improve, and fractures continued to occur in the ankles, wrists, shoulders, ribs, etc., even from light impacts. Results: The patient underwent an osteoporosis test in February 2019, which resulted in an average T-score of -2.5 or less, equivalent to being diagnosed with osteoporosis. OCNT has been performed since May 2019 (late 60s), and in the test received in April 2020, the T-score value improved to over -2.5 and was determined normal at the hospital. Since then, OCNT continued without any further injection treatments. Unlike before, even when she fell hard, she only suffered bruises without fractures, and no additional fractures have occurred. Conclusion: OCNT may help patients with similar problems relieve symptoms and recover.

균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구 (A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge)

  • 이내현;유철호;최규훈
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

성층희박연소 운전조건에서 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 분무 및 화염특성 (Effect of Injection Pressure and Injection Timing on Spray and Flame Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation)

  • 오희창;이민석;박정서;배충식
    • 대한기계학회논문집B
    • /
    • 제37권3호
    • /
    • pp.221-228
    • /
    • 2013
  • 분무유도식 DISI엔진의 성층연소운전조건에서 분무 및 화염특성에 대한 실험적 연구가 수행되었다. 연소가시화를 통하여 성층연소 DISI의 연소는 희박 예혼합 연소와 확산연소의 성격을 모두 가지고 있는 것으로 확인되었다. 분사시기에 따른 혼합기 형성특성이 연소의 특성을 결정하는 중요한 인자임을 관찰하였다. 분무와 혼합기 가시화를 통해 낮은 분위기압에서의 over-mixing, 높은 분위기압에서의 under-mixing이 발생하는 것을 확인하였으며 이러한 혼합기 형성과정의 결과에 따라 화염특성, 연소효율 등의 연소특성이 결정되는 것을 살펴볼 수 있었다. 또한, NOx, IMEP도 분사시기에 따른 경향성을 보였으며, 분사시기에 따른 연소상의 변화에 의한 영향임을 확인하였다.

DPIV와 엔트로피 해석방법을 이용한 가시화 엔진내의 유동 특성 및 성층효과에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics and the Stratification Effects in Visualization Engine Using the DPIV and the Entropy Analysis)

  • 이창희;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.9-18
    • /
    • 2005
  • The objective of this study is to analyse the spray characteristics according to the injection duration under the ambient pressure condition, and the injection timing in the visualization engine. In order to investigate the spray behavior, we obtained the spray velocity using the PIV method that has been an useful optical diagnostics technology, and calculated the vorticity from spray velocity component. These results elucidated the relationship between vorticity and entropy which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion rate of spray using the entropy analysis based on the Boltzmann's statistical thermodynamics. Using these method, it was found that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation. We also found that the homogeneous diffusion rate increased as the injection timing moved to the early intake stroke process and BTDC $50^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

CAI 연소 방법을 이용한 직분식 가솔린 엔진내의 조기 분사시 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Combustion and Emission Characteristics of the Early Injection in a Gasoline Direct Injection Engine Using Controlled Auto Ignition Combustion Method)

  • 최영종;이기형;이창희
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.457-464
    • /
    • 2006
  • Controlled auto ignition (CAI) combustion, also known as HCCI (homogeneous charge compression ignition), offers the potential to simultaneously improve fuel economy and reduce emission. CAI-combustion was achieved in a single cylinder gasoline DI engine, with a cylinder running in a CAI mode. Standard components were used the camshafts which had been modified in order to restrict the gas exchange process. The effects of air-fuel ratio, residual EGR rate and injection timing such as early injection and late injection on the attainable CAI combustion region were investigated. The effect that injection timings on factor such as start of combustion, combustion duration and heat release rate was also investigated. From results early injection caused the mixture to ignite earlier and burn more quickly due to the exothermic reaction during the recompression and gave rise to good mixing of the fuel-air.

금속.사출성형 특허분석 (A Patent Analysis on Metal Injection Molding Technology)

  • 길상철;배영문;이병민
    • 기술혁신학회지
    • /
    • 제5권3호
    • /
    • pp.382-395
    • /
    • 2002
  • Metal Injection Molding(MIM) is a technology without any mechanical processing, which is a promising area backed up by nano powder technology developed in late 1990's. The market was about 24 billion U$ in 1999. Many applications are made in process development, uses, powder making, hindering and sintering, of which order is in terms of the number of patents. This technologies are mainly developed by US firms, and applied by Japanese firms. Europe and Korea are still catch-up stage. More efforts should be made in this field because new opportunities are opening, thanks to nano technology.

  • PDF

직접분사식 가솔린 엔진의 연소제어인자에 따른 희박연소 특성 연구 (A Study on the Lean Combustion Characteristics with Variation of Combustion Parameter in a Gasoline Direct Injection Engine)

  • 박철웅;오진우;김홍석
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.39-45
    • /
    • 2012
  • Today gasoline engines for vehicular application are not only faced with stringent emission regulation but also with increasing requirements to better fuel economy, while guaranteeing power density. The spray-guided type gasoline direct injection (GDI) engine has an advantage of improved thermal efficiency and lower harmful emissions. Centrally mounted high pressure injector and adjacent spark plug allow stable lean combustion due to the flexible mixture stratification. In the present study, the performance and emissions characteristics of developed spray-guided type GDI combustion system were evaluated at various excess air ratio conditions. The specific fuel consumption and nitrogen oxides ($NO_x$) emissions were reduced due to the achievement of stable lean combustion under flammability limit. Multiple injection strategy was not helpful to improve fuel consumption while further reduction of $NO_x$ emissions was possible.