• Title/Summary/Keyword: Last Planner

Search Result 24, Processing Time 0.018 seconds

Generator's Maintenance Scheduling to Improve Supply Reliability (공급신뢰도 개선을 위한 발전기 보수계획)

  • 차준민
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Maintenance scheduling of generators plays an important role in evaluating supply reliability of power systems. Since generators must be maintained and inspected, the generation planner must schedule planned outages during the year. Several factors entering into this scheduling analysis include: seasonal load-demand profile, amount of maintenance, size of the units, elapsed time from last maintenance, and availability of maintenance crew. This paper proposes a new maintenance scheduling algorithm for the alternatives of long-term generation expansion planning by using LOLP levelization method which is known as an effective method for the generator's maintenance scheduling. To get the best supply reliability of power systems, we change the maintenance period to levelize the reliability over all period. The proposed algorithm is applied to a real size power system and the better reliability results are obtained.

  • PDF

'Knowing' with AI in construction - An empirical insight

  • Ramalingham, Shobha;Mossman, Alan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.686-693
    • /
    • 2022
  • Construction is a collaborative endeavor. The complexity in delivering construction projects successfully is impacted by the effective collaboration needs of a multitude of stakeholders throughout the project life-cycle. Technologies such as Building Information Modelling and relational project delivery approaches such as Alliancing and Integrated Project Delivery have developed to address this conundrum. However, with the onset of the pandemic, the digital economy has surged world-wide and advances in technology such as in the areas of machine learning (ML) and Artificial Intelligence (AI) have grown deep roots across specializations and domains to the point of matching its capabilities to the human mind. Several recent studies have both explored the role of AI in the construction process and highlighted its benefits. In contrast, literature in the organization studies field has highlighted the fear that tasks currently done by humans will be done by AI in future. Motivated by these insights and with the understanding that construction is a labour intensive sector where knowledge is both fragmented and predominantly tacit in nature, this paper explores the integration of AI in construction processes across project phases from planning, scheduling, execution and maintenance operations using literary evidence and experiential insights. The findings show that AI can complement human skills rather than provide a substitute for them. This preliminary study is expected to be a stepping stone for further research and implementation in practice.

  • PDF

Survey of Geomorphological Resources of 'Daegu Innovation Town' Development Plan Area (대구 혁신도시 개발예정지의 지형자원 조사)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.2
    • /
    • pp.173-188
    • /
    • 2008
  • In order to make comparative analysis of geomorphological changes caused by urban development, I surveyed the distribution of geomorphological resources of 'Daegu Innovation Town' development plan area. The results are as follow: (1) At the front of small valleys of back-mountains are formed small alluvial fans, and at the side of small valleys are distributed hills connected with back-mountains. (2) As small valley erode laterally hills, vertical bluffs and planner bedrock riverbed are formed, and in some riverbed are appeared mud cracks and ripple marks. (3) The depth of valley in alluvial fan of 'Sinseo District' is 7m. In Sinseocheon valley dissecting alluvial fan, fluvial terraces 2m high above riverbed are distributed. Those terraces were formed while alluvial fan was dissected after last glacial period.

  • PDF

Spatiotemporal chronographical modeling of procurement and material flow for building projects

  • Francis, Adel;Miresco, Edmond;Le Meur, Erwan
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.119-139
    • /
    • 2019
  • Planning and management building projects should tackle the coordination of works and the management of limited spaces, traffic and supplies. Activities cannot be performed without the resources available and resources cannot be used beyond the capacity of workplaces. Otherwise, workspace congestion will negatively affect the flow of works. Better on-site management allows for substantial productivity improvements and cost savings. The procurement system should be able to manage a wider variety of materials and products of the required quality in order to have less stock, in less time, using less space, with less investment and avoiding multiple storage stations. The objective of this paper is to demonstrate the advantages of using the Chronographic modeling, by combining spatiotemporal technical scheduling with the 4D simulations, the Last Planner System and the Takt-time when modeling the construction of building projects. This paper work toward the aforementioned goal by examining the impact that material flow has on site occupancy. The proposed spatiotemporal model promotes efficient site use, defines optimal site-occupancy and workforce-rotation rates, minimizes intermediate stocks, and ensures a suitable procurement process. This paper study the material flow on the site and consider horizontal and vertical paths, traffic flows and appropriate means of transportation to ensure fluidity and safety. This paper contributes to the existing body of knowledge by linking execution and supply to the spatial and temporal aspects. The methodology compare the performance and procurement processes for the proposed Chronographic model with the Gantt-Precedence diagram. Two examples are presented to demonstrate the benefits of the proposed model and to validate the related concepts. This validation is designed to test the model's graphical ability to simulate construction and procurement.