• Title/Summary/Keyword: Last Glacial maximum

Search Result 68, Processing Time 0.022 seconds

Geomorphic Features of ${\check{O}}rumkol$(Frozen Valley) Area (Kyungnam Province, South Korea) - Mainly about Talus - (경남 밀양 얼음골 일대의 지형적 특성 -Talus를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.165-182
    • /
    • 1997
  • The aim of this paper is to clarify geomorphic features on talus within ${\check{O}}rumkol$ and the origin of ${\check{O}}rumkol$. ${\check{O}}rumkol$ is located in Milyang of Kyungnam province, in South Korea. ${\check{O}}rumkol$ is good area to study talus. because it is characterized by following three geomorphic landscapes : free face surrounding ${\check{O}}rumkol$ ; ${\check{O}}rumkol$ with deep and wide valley floor ; lots of taluses typically developing within ${\check{O}}rumkol$. The main results can be summarized as follows: 1) The origin of ${\check{O}}rumkol$ may be suggested two assumptions : one is that its origin have been resulted from intrusion structure(intrusive rock might capture less resistant rock as tuff) ; the other is that its origin have been resulted from volcanic depression after intrusion or eruption. But these assumptions are not obvious. therefore more geological evidences will be supplemented after this 2) The characteristics of ${\check{O}}rumkol$ talus (1) Pattern ${\check{O}}rumkol$ taluses are tongue-shaped or cone-shaped in appearance. They are $50{\sim}200m$ in length and the range of the maximum width from 25 to 115m and one of their mean slope gradient from 32 to $36^{\circ}$ (2) Origin ${\check{O}}rumkol$ taluses have been formed under periglacial environment in the last glacial age and they are classified into rock fall talus type, considering in conjunction with the shape, hardness, sorting, weathering conditions of constituent debris. (3) The stage of landform development ${\check{O}}rumkol$ talus slope profiles are mainly concave slope. This concave slope type was eventually caused by talus creep at the lower end of the talus. That means new additions of debris from the free face have virtually ceased and there is no evidence of recent motion in the deposit. Now it is predominant that vegetation cover is gradually increasingly. Therefore ${\check{O}}rumkol$ taluses appear to be relict form stage. at present.

  • PDF

Formative Ages and Processes by Types of Natural Abandoned Channels in Korea (우리나라 자연 구하도의 유형별 형성시기와 형성과정)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.1-15
    • /
    • 2012
  • The formative ages and processes of five natural abandoned channels in three types in Korea are studied. The former meandering channel in Seongsandong, Uljin-gun was abandoned due to the neck-cutoff of incised meander, Wangpi River in approximately 2.5~2.6ka and the abandoned channel in Bulyeong Temple, Uljin-gun was formed by the neck-cutoff of Wangpi River in approximately 90ka. Deduced from these results, it is judged to favorable for formation of abandoned channels by incised meander cutoff in interglacial or interstadial stages that had a better condition for meander cutoff because of active lateral erosion. Due to the corrosion of limestone joints in the underground of ridges between Hwangji River and Cheolam River, the channel in Gumumso, Taebaek-si was abandoned by the stream piracy connecting and combining the rivers into a limestone cave in approximately 40ka and higher lower reaches of Dong River than Banbyeon River in Seonbawi, Yeongyang-gun was turned to the abandoned channel throughout the stream piracy between the rivers in approximately 1.4ka. During Last Glacial Maximum in Jangcheon-ri, Chungju-si, Namhan River was divided into the eastern and western tributaries due to the alluvial island in approximately 10ka and then the western tributary was abandoned recently.

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean (북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구)

  • Jang, JeongKyu;Koo, HyoJin;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.15-29
    • /
    • 2021
  • In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.

Benthic Foraminiferal Assemblage and Sedimentary Environment of Core Sediments from the Northern Shelf of the East China Sea (북동중국해 대륙붕 코아 퇴적물의 저서유공충 군집 특성과 퇴적환경 연구)

  • Kang, So-Ra;Lim, Dhong-Il;Kim, So-Young;Rho, Kyoung-Chan;Yoo, Hae-Soo;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.454-465
    • /
    • 2008
  • Benthic foraminiferal assemblage and AMS radiocarbon dating of core sediments from the northern shelf of the East China Sea were analyzed in order to understand the paleoenvironment and sedimentary environmental changes around the Korean marginal seas since the last glacial maximum (LGM). The core sediments, containing continuous records of the last 16,000 years, reveal a series of well-defined vertical changes in number of species (S), P/T ratio and species diversity (H) as well as foraminiferal assemblage. Such down-core variations display a sharp change at a core depth of approximately 240 cm, which corresponds to ca. 10,000 year B.P. The sediments of the lower part of the core (240${\sim}$560 cm, Zone I), including the well-developed tide-influenced sedimentary structures, are characterized by high abundances of Ammonia beccarii and Elphidium clavatum (s.l.) and low values in number of species, P/T ratio and diversity. These tide-influenced signatures and foraminiferal assemblage characters suggest that the sediments of Zone I were deposited in a coastal environment (water depths of 20${\sim}$30 m) such as tidal estuary with an influence of the paleo-rivers (e.g., old-Huanghe and Yangtze rivers) during the early phase of the sea-level rise (ca. 16,000 to 10,000 years) since the LGM. In contrast, the upper core sediments (0${\sim}$240 cm, Zone II) are characterized by abundant Eilohedra nipponica and Bolivina robusta with a minor contribution of A. ketienziensis angulata and B. marginata. and high values in number of species, P/T ratio and diversity. Based on relative abundance of these assemblage, Zone II can be divided into two subzones (IIa and IIb). Zone IIa is interpreted to be deposited under the inner-to-middle shelf environment during the marine transgression in the early Holocene (after ca. 9,000 yr B.P.) when sea level rapidly increased. The sediments of zone IIb most likely deposited after 6,000 yr B.P. under the outer shelf environment (80${\sim}$100 m water depth), which is similar to modem depositional environments. The muddy sediments of zone IIb were probably transported from the old-Huanghe and Yangtze Rivers during the late Holocene. We suggest that the present-day oceanographic conditions over the Yellow and the East China Seas have been established after ca. 7,000${\sim}$6,000 yr B.P. when the Kuroshio Current began to influence this area.

Formation Environment of Quaternary deposits and Palynology of Jangheung-ri Archaeological Site (Jiphyeon County, Jinju City), Korea (진주 집현 장흥리 유적 제4기 퇴적층 형성 및 식생환경 연구)

  • 김주용;박영철;양동윤;봉필윤;서영남;이윤수;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.9-21
    • /
    • 2002
  • In Korea, many open-air upper palaeolithic sites are located at the river valley, particularly exposed in gently rotting terrain along the river course. They are situated at an altitude less trail 30 m above present river bottom, and covered with the blankets of slope deposits of several meters in thickness. The purpose of this research is to eluridate depositional and vegetational environment of the alluvial upper palaeolithic Jangheung-ri sites on the basis of analytical properties of grain size population, chronology, palynology, soil chemistry and clay mineralogy and magnetic susceptibility of the Jangheung-ri Quaternary formations. The lithostratograpy of Jangheung-ri sit is subdivided into 3 layers based on the depositional sequence and radiocarbon ages. From bottom to top, they are composed of slope deposits with lower paleosol layers, young fluvial sand and gravel with backswamp organic muds, and upper paleosol layers. The upper paleosol was formed under rather dry climatic condition between each flooding period. Dessication cracks were prevalent in the soil solum which was filled with secondarily minuted fragments due to pedogenetic process. The soil structure shows typical braided-typed cracks in the root part of cracking texture, and more diversified pattern of crackings downward. The young fluvial sand gravel were formed by rather perennial streams after LGM. The main part of organic muds was particularly formed after 15Ka. Local backswamp were flourished with organic muds and graded suspension materials in the flooding muds were intermittently accumulated in the organic muds until ca. 11Ka. This episode was associated with migration of Nam River toward present course. Organic muds were formed in backswamp or local pond. Abies/Picea-Betula with Ranunculaceae, Compositae, Cyperaceae were prevalent. This period is characterized with B$\Phi$lling, Older Dryas, Allerod, and Younger Dryas (MIS-1). Stone artefacts were found in the lower paleosol layers formed as old as 18Ka-22Ka. Based on the artefacts and landscape settings of the Jangheung-ri site, it is presumed that settlement grounds of old people were buried by frequent floodings of old Nam River, the river-beds of which were heavily fluctuated laterally and river-bed erosions were activated from south to north in Jangheung-ri site until the terminal of LGM9ca 17Ka).

  • PDF

Origin of Sandstone Fragments Within Core Sediments Obtained from Southwestern Continental Shelf of the Ulleung Basin, East Sea (동해 울릉분지 남서부 대륙붕에서 채취된 시추퇴적물내 사암편의 기원)

  • Lee, Eui-Hyeong;Lee, Yong-Kuk;Shin, Dong-Hyeok;Huh, Sik;Kim, Seong-Ryul;Jeong, Baek-Hoon;Han, Sang-Joon;Chun, Jong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.126-134
    • /
    • 2001
  • Several angular sandstone fragments (about 7 cm in longest diameter) occur in two piston cores, obtained from the submarine trough in the northeastern part of Korea Strait. The origin of the sandstone fragments and the paleoenvironment of trough sediment could be suggested from sedimentary facies analysis of cores and identification of ostracod within sandstone fragments. Echo characteristics around two core sites in submarine trough represent the prolonged bottom echoes with diffuse or no subbottom reflectors. The cores consist of a lower bioturbated mud and an upper gravelly sand sediments with sandstone/shell fragments. The bioturbated mud sediments show low water contents (27-44%) and high shear strength (19.2->37 kPa) compared with those of Holocene sediments (60-219% and 1.0-2.7 kPa, respectively) in the inner shelf and continental slope. However, clay contents (48-56%) of the bioturbated mud sediments are similar to those of fluviatile Holocene sediments in the inner shelf. The mean grain size of gravelly sand sediments ranges from 2.3 to 3.0 ${\phi}$ and shows coarsening upward with sandstone/shell fragments. The Holocene palimpsest in the continental shelf are composed of muddy sand sediments or sandy mud sediments (mean grain size: 4.6-7.6 ${\phi}$). Those suggest that two core sediments might be formed from Paleofluvial and paleocoastal deposits during sea-level lowstand. However, sandstone fragments mainly consist of quartz grains and bioclasts, with carbonate matrix, hollow pore, and glauconite. Two extinct ostracod species, Normanicythere sp. and Kotoracythere sp., are recovered in the sand-stone fragments of core EP-7, and they continued to exist from late Pliocene to early Pleistocene in cold water environment of this area. Thus, the sandstone fragments are interpreted to be formed at the paleocoastal environment derived from the Plio-Pleistocene outcrops exposed around the submarine trough during the LGM (Last Glacial Maximum) period.

  • PDF

Formation and Evolution of the Paleo-Seomjin River Incised-Valley System, Southern Coast of Korea: 1. Sequence Stratigraphy of Late Quaternary Sediments in Yosu Strait (한반도 남해안 고섬진강 절개곡 시스템의 형성과 진화: 1. 여수해협의 후기 제 4기층에 대한 순차층서)

  • Chun, Seung-Soo;Chang, Jin-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 2001
  • Detailed interpretation of some high-resolution seismic profiles in Yosu Strait reveals that Late Quaternary deposits consist of three allostratigraphic units (UH, LH, PL) formed by fluvial and tidal controls. The top mud unit, UH, thins onshore, and overlies the backstepping modem Seomjin delta deposits, which is interpreted as a transgressive systems tract (757) related to Holocene relative sea-level rise. The unit LH below the unit UH is composed of delta, valley- and basin-fill facies. The delta facies (Unit $LH_1$) occurs only in Gwangyang Bay and shows two prograding sets retrogradationaly stacked, thus it is also interpreted as a transgressive systems tract(757). On the contrary, the valley- and basin-fill facies (Unit $LH_2$), interpreted as 757, occur between the units UH and PL (Pleistocene deposits) in Yosu Strait. The bounding surface between UH and $LH_2$ can be interpreted as a tidal ravinement surface on the basis of trends thinning toward inner bay and becoming young landward. Furthermore its geomorphological pattern is similar to that of recent tidal channels. This allostratigraphy in'ffsu Strait suggests that two 757 deposits (UH and $LH_2$), divided by tidal ravinement surface, have been formed in Yosu Strait, whereas in Gwangyang Bay backstepping delta deposits ($LH_1$) without tidal ravinement surface have been formed during Holocene sea-level rise. These characteristics indicate that different stacking patterns could be formed in these two areas according to different increasing rate of accommodation space caused by different geomorphology, sediment supply and tidal-current patterns even in the same period of Holocene sea-level rise.

  • PDF

Natural Heritage Values and Diversity of Geoheritages on Udo Island, Jeju Province (제주도 우도 지역 내 지질유산의 다양성과 가치)

  • Woo, Kyung Sik;Yoon, Seok Hoon;Sohn, Young Kwan;Kim, Ryeon;Lee, Kwang Choon;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.290-317
    • /
    • 2013
  • The objectives of this study are to investigate the natural heritage and scientific value of various geosites on Udo Island, and to evaluate the sites as natural monuments and as world natural heritage properties. Udo Island includes a variety of geoheritage sites. Various land forms formed during the formation of the Someori Oreum formed by phreatomagmatic eruptions. The essential elements for the formation of Udo Island are the tuff cone, overflowing lava and overlying redeposited tuff sediments. Various coastal land forms are also present. About 6,000 years B.C., when sea-level rose close to its present level due to deglaciation since the Last Glacial Maximum, carbonate sediments have been formed and deposited in shallow marine environment surrounding Udo Island. In particular, the very shallow broad shelf between Udo Island and Jeju Island, less than 20 m in water depth, has provided perfect conditions for the formation of rhodoids. Significant amounts of rhodoids are now forming in this area. Occasional transport of these rhodoids by typhoons has produced unique beach deposits which are entirely composed of rhodoids. Additional features are the Hagosudong Beach with its white carbonate sands, the Geommeole Beach with its black tuffaceous sands and Tolkani Beach with its basalt cobbles and boulders. Near Hagosudong Beach, wind-blown sands in the past produced carbonate sand dunes. On the northern part of the island, special carbonate sediments are present, due to their formation by composite processes such as beach-forming process and transportation by typhoons. The development of several sea caves is another feature of Udo Island, formed by waves and typhoon erosion within tuffaceous sedimentary rocks. In particular, one sea cave found at a depth of 10 m is very special because it indicates past sea-level fluctuations. Shell mounds in Udo Island may well represent the mixed heritage feature on this island. The most valuable geoheritage sites investigated around Udo Isalnd are rhodoid depostis on beaches and in shallow seas, and Someori Oreum composed of volcanoclastic deposits and basalt lava. Beach and shallow marine sediments, composed only of rhodoids, appear to be very rare in the world. Also, the natural heritage value of the Someori Oreum is outstanding, together with other phreatomagmatic tuff cones such as Suwolbong, Songaksan and Yongmeori. Consequently, the rhodoid deposits and the Someori Oreum are worth being nominated for UNESCO World Natural Heritage status. The designation of Someori Oreum as a Natural Monument should be a prerequisite for this procedure.