• 제목/요약/키워드: Laser-Compton scattering (LCS)

검색결과 1건 처리시간 0.023초

A feasibility study on photo-production of 99mTc with the nuclear resonance fluorescence

  • Ju, Kwangho;Lee, Jiyoung;ur Rehman, Haseeb;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.176-189
    • /
    • 2019
  • This paper presents a feasibility study for producing the medical isotope $^{99m}Tc$ using the hazardous and currently wasted radioisotope $^{99}Tc$. This can be achieved with the nuclear resonance fluorescence (NRF) phenomenon, which has recently been made applicable due to high-intensity laser Compton scattering (LCS) photons. In this work, 21 NRF energy states of $^{99}Tc$ have been identified as potential contributors to the photo-production of $^{99m}Tc$ and their NRF cross-sections are evaluated by using the single particle estimate model and the ENSDF data library. The evaluated cross sections are scaled using known measurement data for improved accuracy. The maximum LCS photon energy is adjusted in a way to cover all the significant excited states that may contribute to $^{99m}Tc$ generation. An energy recovery LINAC system is considered as the LCS photon source and the LCS gamma spectrum is optimized by adjusting the electron energy to maximize $^{99m}Tc$ photo-production. The NRF reaction rate for $^{99m}Tc$ is first optimized without considering the photon attenuations such as photo-atomic interactions and self-shielding due to the NRF resonance itself. The change in energy spectrum and intensity due to the photo-atomic reactions has been quantified using the MCNP6 code and then the NRF self-shielding effect was considered to obtain the spectrums that include all the attenuation factors. Simulations show that when a $^{99}Tc$ target is irradiated at an intensity of the order $10^{17}{\gamma}/s$ for 30 h, 2.01 Ci of $^{99m}Tc$ can be produced.