• Title/Summary/Keyword: Laser via

Search Result 345, Processing Time 0.032 seconds

Influence of Metallic Sodium on Repair Weldability for Type 316FR Stainless Steel

  • Chun, Eun-Joon;Lee, Su-Jin;Suh, Jeong;Lee, Ju-Seung;Kang, Namhyun;Saida, Kazuyoshi
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The effect of residual metallic sodium on the solidification cracking susceptibility of type 316FR stainless steel was investigated via transverse-Varestraint tests. And a solidification brittle temperature range (BTR) of type 316FR stainless steel was 37 K. However, the BTR expanded from 37 to 67 K, as the amount of metallic sodium at the specimen surface increased from 0 to $7.99mg/cm^2$. Microstructural observation of the weld metal suggested that metallic sodium existed in the weld metal, including in the cell boundaries, during welding solidification. Thermodynamic calculations suggested that sodium expanded the temperature range of solidliquid coexistence during welding solidification of the steel weld metal. Therefore, the increased solidification cracking susceptibility (i.e., expansion of the BTR) in the residual sodium environment was attributed to enhanced segregation of sodium during the welding solidification; this segregation, in turn, resulted in an expanded temperature range of solid-liquid coexistence.

Additive Process Using Femto-second Laser for Manufacturing Three-dimensional Nano/Micro-structures

  • Yang, Dong-Yol;Lim, Tae-Woo;Son, Yong;Kong, Hong-Jin;Lee, Kwang-Sup;Kim, Dong-Pyo;Park, Sang-Hu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.63-69
    • /
    • 2007
  • The two-photon stereolithography (TPS) process is a promising technique for the fabrication of real three-dimensional (3D) nano/micro-structures via application of a femto-second laser, In TPS, when a near-infrared ultrashort-pulsed laser is closely focused onto a confined volume of photocurable resin, only the local area at the center of the focus is cured. Therefore, real 3D microstructures with resolution under the diffraction limit can be fabricated through a layer-by-layer accumulative technique, This process provides opportunities to develop neo-conceptive nano/micro devices in IT/BT industries, However, a number of issues, including development of effective fabrication methods, highly sensitive and functional materials, and neo-conceptive devices using TPS, must be addressed for the realization of industrial application of TPS. In this review article, we discuss our efforts related to TPS: effective fabrication methods, diverse two-photon curable materials for high functional devices, and applications.

Automatic Pipeline Welding System with Self-Diagnostic Function and Laser Vision Sensor

  • Kim, Yong-Baek;Moon, Hyeong-Soon;Kim, Jong-Cheol;Kim, Jong-Jun;Choo, Jeong-Bog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1137-1140
    • /
    • 2005
  • Automatic welding has been used frequently on pipeline projects. The productivity and reliability are most essential features of the automatic welding system. The mechanized GMAW process is the most widely used welding process and the carriage and band system is most effective welding system for pipeline laying. This application-oriented paper introduces new automatic welding equipment for pipeline construction. It is based on cutting-edge design and practical welding physics to minimize downtime. This paper also describes the control system which was designed and implemented for new automatic welding equipment. The system has the self diagnostic function which facilitates maintenance and repairs, and also has the network function via which the welding task data can be transmitted and the welding process data can be monitored. The laser vision sensor was designed for narrow welding groove in order to implement higher accuracy of seam tracking and fully automatic operation.

  • PDF

Development of 3D-based On-Machine Measurement Operating System

  • Yoon Gil-Sang;Heo Young-Moo;Kim Gun-Hee;Cho Myeong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.45-50
    • /
    • 2005
  • This paper proposed an efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software-based 3D modeler for inspection on machine, and it is interfaced with machine tools via RS232C. The software is composed of two inspection modules; one is touch probe operating module, and the other is laser displacement sensor operating module. The module for touch probe needs the inspection feature extracted from CAD data. The touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of the laser displacement sensor is used to inspect profiles and very small holes. An advantage of this inspection method is the ability to execute on-line inspection during machining or afterward. The efficiency of proposed system which can predict and define the machining errors of each process was verified, so the developed system was applied to inspect a mold-base (cavity, core).

LASER FLASH PHOTOLYSIS STUDY ON THE PHOTOCYCLIZATION OF N-(O-HALOBENZYL) IMIDAZOLE

  • Park, Yong-Tae;Hwang, Young-Sun;Song, Woong Song;Kim, Dongho
    • Journal of Photoscience
    • /
    • v.3 no.2
    • /
    • pp.91-93
    • /
    • 1996
  • In connection with our interest on the photochemical properties of heteroaryl halides, which are currently the subject of heterocyclic ring formation and haloarene degradation, we have studied the photochemistry of the haloarene linked to N-heteroarene compounds. Imidazo[5,1-a]isoindole was synthesized from N-(ochlorobenzyl)imidazole or N-(o-bromobenzyl) imidazole in acidic aqueous solution or acetonitrile via the intramolgcular photocyclization (Table 1). This type of reaction provides the synthetic methods for 5- and 6-membered polyheteroatomic heterocyclic ring compounds. However, the reaction mechanism for the intramolecular photocyclization of haloarene tethered heteroarenes has not yet been established. Grimshaw et al. suggested a mechanism for homolyric carbonhalogen bond fission assisted by radical complexation to explain their results in the photocyclization of 5-(2-chlorophenyl)-1,3-diphenylpyrazole. They also reported the detection of acyclohexadienyl intermediate involved in the above reaction. Park et al. reported several transient 'intermediates involved in the laser flash photolysis of N-(o-halobenzyl) pyridinium and N-benzyl-2-halopyridinium salts. Thus we performed the laser flash photolysis study on the photocyclization reaction of N-(o-chlorobenzyl) imidazole to identify the intermediate species involved in the reaction. Here, we report on the preliminary results in the photocyclization reaction of N-(o-halobenzyl)imidazole through the detection of reaction intermediates.

  • PDF

Facile Fabrication and Characterization of In2O3 Nanorods on Carbon Fibers

  • Nagaraju, Goli;Ko, Yeong Hwan;Yu, Jae Su
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.187-191
    • /
    • 2014
  • Indium oxide ($In_2O_3$) nanorods (NRs) which can be expected to increase the device performance in various electronic and electrochemical applications were prepared on carbon fibers via an electrochemical deposition (ED) method. During the ED, the indium hydroxide ($In(OH)_3$) NRs were well grown and firmly attached onto the carbon fibers. After that, they were changed into $In_2O_3$ by dehydration through a thermal annealing. The morphological and structural properties were investigated using field-emission scanning electron microscope images. The crystallinity of as-prepared sample was evaluated by X-ray diffraction. The Fourier transform infrared results confirm that the functional groups are present in the $In_2O_3$ NRs. This facile process of metal oxide nanostructures on carbon fiber can be utilized for flexible electronic and energy related applications.

A Case of Cavernous Hemangioma Occurred in Arytenoid (피열부에 발생한 해면상 혈관종 1예)

  • Kim, Tae Hwan;Kim, So Yeon;Lee, Sang Hyuk;Jin, Sung Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.26 no.1
    • /
    • pp.54-57
    • /
    • 2015
  • Hemangioma is one of the most common benign neoplasm, which occurs about 50% in head and neck region, but laryngeal hemangioma is relatively rare. Hemangioma occurred in larynx can be treated by surgical removal, cryosurgery, and steroid injection. Transoral CO2 laser micorsurgery has been known as useful method for the treatment of laryngeal hemangioma. We have experienced a 54-years old male patient of hemangioma originated in arytenoid area. This mass was removed via transoral approach with 'en bloc' resection by CO2 laser. We report this case regarding the treatment and prognosis of laryngeal hemangioma with review of literatures.

  • PDF

Electrical and Optical Properties of Ga-doped SnO2 Thin Films Via Pulsed Laser Deposition

  • Sung, Chang-Hoon;Kim, Geun-Woo;Seo, Yong-Jun;Heo, Si-Nae;Huh, Seok-Hwan;Chang, Ji-Ho;Koo, Bon-Heun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.144-148
    • /
    • 2011
  • $Ga_2O_3$ doped $SnO_2$ thin films were grown by using pulsed laser deposition (PLD) technique on glass substrate. The optical and electrical properties of these films were investigated for different doping concentrations, oxygen partial pressures, substrate temperatures, and film thickness. The films were deposited at different substrate temperatures (room temperature to $600^{\circ}C$). The best opto-electrical properties is shown by the film deposited at substrate temperature of $300^{\circ}C$ with oxygen partial pressure of 80 m Torr and the gallium concentration of 2 wt%. The as obtained lowest resistivity is $9.57{\times}10^{-3}\;{\Omega}cm$ with the average transmission of 80% in the visible region and an optical band gap (indirect allowed) of 4.26 eV.

Development of High Resolution Laser Doppler Vibrometer (고 분해능 레이저 도플러 진동계의 개발)

  • Kim, Seong-Hun;Go, Jin-Hwan;Kim, Ho-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • A high resolution Laser Doppler Vibrometer(LDV) developed using electronic fringe counting method. The fringe pattern signal obtained via analog signal processing is divided into two. One was converted to a TTL signal with a ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration. The other was directed to the A/D converter to get a high resolution of about $\lambda/320$ with the phase comparison method. The data obtained with the A/D converter was used in the displacement calculation and the result was displayed on a LCD pane. In this study, a Laser Doppler Vibrometer with measurement range of $0.32\mum~129\mum$ and displacement resolution of 2nm, about $\lambda/320$ , was developed. And this LDV can be used to measure the dynamic of microsize devices such as MEMS(Micro Electro-Mechanical Systems) and to diagnose high capacity electric equipment such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

Microfabrication of Micro-Conductive patterns on Insulating Substrate by Electroless Nickel Plating (무전해 니켈 도금을 이용한 절연기판상의 미세전도성 패턴 제조)

  • Lee, Bong-Gu;Moon, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.90-100
    • /
    • 2010
  • Micro-conductive patterns were microfabricated on an insulating substrate ($SiO_2$) surface by a selective electroless nickel plating process in order to investigate the formation of seed layers. To fabricate micro-conductive patterns, a thin layer of metal (Cu.Cr) was deposited in the desired micropattern using laser-induced forward transfer (LIFT). and above this layer, a second layer was plated by selective electroless plating. The LIFT process. which was carried out in multi-scan mode, was used to fabricate micro-conductive patterns via electroless nickel plating. This method helps to improve the deposition process for forming seed patterns on the insulating substrate surface and the electrical conductivity of the resulting patterns. This study analyzes the effect of seed pattern formation by LIFT and key parameters in electroless nickel plating during micro-conductive pattern fabrication. The effects of the process variables on the cross-sectional shape and surface quality of the deposited patterns are examined using field emission scanning electron microscopy (FE-SEM) and an optical microscope.