• Title/Summary/Keyword: Laser scanning Technology

Search Result 377, Processing Time 0.026 seconds

Laser Sintering of Silver Nanoparticle for Flexible Electronics (유연소자 응용을 위한 은 나노입자의 레이저 소결)

  • Jia, Seok Young;Park, Won Tea;Noh, Yong-Young;Chang, Won Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.135-139
    • /
    • 2015
  • We present a fine patterning method of conductive lines on polyimide (PI) and glass substrates using silver (Ag) nanoparticles based on laser scanning. Controlled laser irradiation can realize selective sintering of conductive ink without damaging the substrate. Thus, this technique easily creates fine patterns on heat-sensitive substrates such as flexible plastics. The selective laser sintering of Ag nanoparticles was managed by optimizing the conditions for the laser scan velocity (1.0-20 mm/s) and power (10-150 mW) in order to achieve a small gap size, high electrical conductivity, and fine roughness. The fabricated electrodes had a minimum channel length of $5{\mu}m$ and conductivity of $4.2{\times}10^5S/cm$ (bulk Ag has a conductivity of $6.3{\times}10^5S/cm$) on the PI substrate. This method was used to successfully fabricate an organic field effect transistor with a poly(3-hexylthiophene) channel.

Measuring Plate Thickness Using Spatial Local Wavenumber Filtering (국소 공간 웨이브넘버 필터링 기법을 이용한 평판 구조물 두께 측정)

  • Kang, To;Lee, Jeong Han;Han, Soon Woo;Park, Jin Ho;Park, Gyuhae;Jeon, Jun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.370-376
    • /
    • 2016
  • Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation.

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

Progress Measurement of Structural Frame Construction using Point Cloud Data (포인트 클라우드 데이터를 활용한 골조공사 진도측정 연구)

  • Kim, Ju-Yong;Kim, Sanghee;Kim, Gwang-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • Recently, 3D laser scanning technology, which can collect accurate and quick information on phenomena, has been attracting attention among smart construction technologies. 3D laser scanning technology can obtain information most similar to reality at construction sites. In this study, we would like to apply a new member identification method to an actual building and present the possibility of applying point cloud data, which can be collected using 3D laser scanning technology, to measuring progress at construction sites. In order to carry out the research, we collected location information for component identification from BIM, set a recognition margin for the collected location information, and proceeded to identify the components that make up the building from point cloud data. Research results We confirmed that the columns, beams, walls, and slabs that make up a building can be identified from point cloud data. The identification results can be used to confirm all the parts that have been completed in the actual building, and can be used in conjunction with the unit price of each part in the project BOQ for prefabricated calculations. In addition, the point cloud data obtained through research can be used as accurate data for quality control monitoring of construction sites and building maintenance management. The research results can contribute to improving the timeliness and accuracy of construction information used in future project applications.

Influence of access cavity design on calcium hydroxide removal using different cleaning protocols: a confocal laser scanning microscopy study

  • Seda Falakaloglu;Merve Yeniceri Ozata;Betul Gunes;Emmanuel Joao Nogueira Leal Silva;Mustafa Gundogar;Burcu Gucyetmez Topal
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.25.1-25.13
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the influence of endodontic access cavities design on the removal of calcium hydroxide medication of the apical third of mandibular incisor root canal walls and dentinal tubules with different cleaning protocols: EDDY sonic activation, Er,Cr:YSGG laser-activated irrigation, or conventional irrigation with IrriFlex. Materials and Methods: Seventy-eight extracted human mandibular incisors were assigned to 6 experimental groups (n = 13) according to the endodontic access cavity and cleaning protocol for calcium hydroxide removal: traditional access cavity (TradAC)/EDDY; ultraconservative access cavity performed in the incisal edge (UltraAC.Inc)/EDDY; TradAC/Er,Cr:YSGG; UltraAC. Inc/Er,Cr:YSGG; TradAC/IrriFlex; or UltraAC.Inc/IrriFlex. Confocal laser scanning microscopy images were used to measure the non-penetration percentage, maximum residual calcium hydroxide penetration depth, and penetration area at 2 and 4 mm from the apex. Data were statistically analyzed using Shapiro-Wilk and WRS2 package for 2-way comparison of non-normally distributed parameters (depth of penetration, area of penetration, and percentage of non-penetration) according to cavity and cleaning protocol with the significance level set at 5%. Results: The effect of cavity and cleaning protocol interactions on penetration depth, penetration area and non-penetration percentage was not found statistically significant at 2 and 4 mm levels (p > 0.05). Conclusions: The present study demonstrated that TradAC or UltraAC.Inc preparations with different cleaning protocols in extracted mandibular incisors did not influence the remaining calcium hydroxide at 2 and 4 mm from the apex.

Characterization of Electrical Properties of Si Nanocrystals Embedded in a $SiO_2$ Layer by Scanning Probe Microscopy (SPM (Scanning Probe Microscopy)을 이용한 $SiO_2$ layer에서의 실리콘 나노 크리스탈의 전기적 특성 분석)

  • Kim, Jung-Min;Her, Hyun-Jung;Son, J.M.;Lee, Eun-Hye;Khang, Yoon-Ho;Kang, Chi-Jung;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1900-1902
    • /
    • 2005
  • 본 연구에서는 scanning probe microscopy(SPM)을 이용하여 국소영역에서 silicon nanocrystal(Si NC)의 전기적 특성을 분석하였다. Si NCs은 압축된 silicon powder를 laser로 분해하는 laser ablation 방식으로 제조되었고, sharpening oxidation 과정을 통하여 Si NC 주변에 oxide shell을 형성시켰다. 이 과정에서 Si NCs은 $10{\sim}50 nm$의 크기와 약 $10^{11}/cm^2$의 밀도로 $SiO_2$층에 증착되었다. SPM의 conducting tip을 통하여 전하는 각각의 Si NC로 주입되게 되고, 이로 인하여 발생하는 SCM image와 dC/dV curve의 변화를 통하여 Si NC에서 전하 거동을 모니터 하였다. 또한 국소영역에서 Si NC의 전기적 특성을 MOS capacitor 구조에서의 C-V 특성과 비교 분석하였다.

  • PDF

An investigation on dicing 28-nm node Cu/low-k wafer with a Picosecond Pulse Laser

  • Hsu, Hsiang-Chen;Chu, Li-Ming;Liu, Baojun;Fu, Chih-Chiang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • For a nanoscale Cu/low-k wafer, inter-layer dielectric (ILD) and metal layers peelings, cracks, chipping, and delamination are the most common dicing defects by traditional diamond blade saw process. Sidewall void in sawing street is one of the key factors to bring about cracks and chipping. The aim of this research is to evaluate laser grooving & mechanical sawing parameters to eliminate sidewall void and avoid top-side chipping as well as peeling. An ultra-fast pico-second (ps) laser is applied to groove/singulate the 28-nanometer node wafer with Cu/low-k dielectric. A series of comprehensive parametric study on the recipes of input laser power, repetition rate, grooving speed, defocus amount and street index has been conducted to improve the quality of dicing process. The effects of the laser kerf geometry, grooving edge quality and defects are evaluated by using scanning electron microscopy (SEM) and focused ion beam (FIB). Experimental results have shown that the laser grooving technique is capable to improve the quality and yield issues on Cu/low-k wafer dicing process.

Development of Laser Speckle Flowgraphy System for Monitoring Blood Flow in Skin Tissue (레이저 산란 현상을 이용한 피부혈류 화상화 시스템의 개발)

  • Lee, M.C.;Fujii, H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.392-396
    • /
    • 2007
  • In this paper, we develop a new system to visualize the blood flow map in skin tissue, using the technique of Laser Speckle Flowgraphy (LSFG). The measuring unit consists of the laser diode, imaging system, line sensor, scanning mirror, and one-board microcomputer. The speckle signal is analyzed and sent to a PC, where the blood flow in a tissue area of $14mm{\times}26 mm$ is evaluated and displayed in a 2-D color map. It is demonstrated that the new LSFG instrument is useful to evaluate the degree of allergic reaction in patch test.

Obstacle Classification for Mobile Robot Traversability using 2-dimensional Laser Scanning (2차원 레이저 스캔을 이용한 로봇의 산악 주행 장애물 판단)

  • Kim, Min-Hee;Kwak, Kyung-Woon;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Obstacle detection is much studied by using sensors such as laser, vision, radar and ultrasonic in path planning for UGV(Unmanned Ground Vehicle), but not much reported about its characterization. In this paper not only an obstacle classification method using 2-dimensional LMS(Laser Measurement System) but also a decision making method whether to avoid or traverse the obstacle is proposed. The basic idea of decision making is to classify the characteristics by 2D laser scanned data and intensity data. Roughness features are obtained by range data using a simple linear regression model. The standard deviations of roughness and intensity data are used as measures for decision making by comparing with those of reference data. The obstacle classification and decision making for the UGV can facilitate a short path to the target position and the survivability of the robot.