• Title/Summary/Keyword: Laser scanning Technology

Search Result 377, Processing Time 0.024 seconds

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.

Comparison of Virtual 3D Tree Modelling Using Photogrammetry Software and Laser Scanning Technology (레이저스캐닝과 포토그래메트리 소프트웨어 기술을 이용한 조경 수목 3D모델링 재현 특성 비교)

  • Park, Jae-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.304-310
    • /
    • 2020
  • The technology in 3D modelling have advanced not only maps, heritages, constructions but also trees modelling. By laser scanning(Faro s350) and photogrammetry software(Pix4d) for 3D modelling, this study compared with real coniferous tree and both technology's results about characteristics of shape, texture, and dimensions. As a result, both technologies all showed high reproducibility. The scanning technique showed very good results in the reproduction about bark and leaves. Comparing the detailed dimensions on it, the error between the actual tree and modelling with scanning was 1.7~2.2%, and the scanning result was larger than the actual tree. The error between the actual tree and photogrammetry was only 0.2~0.5%, which was larger than the actual tree. On the other hand, the dark areas's modelling was not fully processed. This study is meaningful as a basic research that can be used for tree DB on BIM for the landscape architecture, landscape design and analysis with AR technology, historical tree and heritage also.

A Study on Fabrication of Conductor Patterns on AlN Ceramic Surface by Laser Direct Writing (레이저 직접묘화법에 의한 AlN 기판상의 전도성 패턴 제작에 관한 연구)

  • Lee, Je-Hoon;Seo, Jung;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2000
  • One of perspective direction of microfabrication is direct laser writing technology that allows to create metal, semiconductive and dielectric micropatterns on substrate surface. In this work, a two step method, the combination of seed forming process, in which metallic Al seed was selectively generated on AlN ceramic substrate by direct writing technique using a pulsed Nd : YAG laser and subsequent electroless Ni plating on the activated Al seed, was presented. The effects of laser parameters such as pulse energy, scanning speed and pulse frequency on shape of Alseed and conductor line after electroless Ni plating were investigated. The nature of the laser activated surface is analyzed from XPS data. The line width of this metallic Al and Ni is analyzed using SEM. As a results, Al seed line with 24㎛ width and 100㎛ isolated line space is obtained. Finally, laser direct writing can be applied in the field between thin and thick film technique in electronic industry.

  • PDF

Laser-Induced Recrystallization of Perovskite Materials for High-Performance Flexible Light-Emitting Diode (고성능 유연 발광 다이오드 소자 구현을 위한 레이저 기반 페로브스카이트 소재의 재결정화)

  • Jae Chan Heo;Ji Eun Kim;Dong Gyu Lee;Yun Sik Hwang;Yu Mi Woo;Han Eol Lee;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.286-291
    • /
    • 2023
  • Perovskite materials are promising candidates for next-generation optoelectronic devices owing to their outstanding external quantum efficiency, high color purity, and ability to tune the light emission wavelength. However, conventional thermal annealing processes caused the degradation of perovskite, resulting in poor optoelectronic properties and a short lifetime. Herein, we propose a laser-induced recrystallization of perovskite thin film to enhance its light-emitting properties. Laser-induced recrystallization process was performed using rapid and instantaneous laser heating, which successfully induced grain growth of the perovskite material. The laser processing conditions were thoroughly optimized based on theoretical calculations and various material analyses such as x-ray diffraction, scanning electron microscope, and photoluminescence spectroscopy.

LAND SLIDE DISPLACEMENT DETECTION USING TIME SERIES DIGITAL SURFACE MODEL ACQUIRED BY A TERRESTRIAL LASER SCANNER

  • Jeong, Jong-Hyeok;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.567-569
    • /
    • 2006
  • Recently, the terrestrial laser scanner is considered as useful measurement equipment for acquiring a three-dimensional data. In this study, a terrestrial laser scanner which has +/- 2.5cm accuracy is examined whether the terrestrial laser scanner is reliable to present the tendency of landslide movement. The test area is covered by protection blocks, and they are being moved by landslide movement. Landslide movement was detected by measuring the movement of protection blocks. Totally three scenes of test area were acquired during 2004 and 2006. The three scenes of the protection blocks were registered in global coordinate system, then the landslide movement was investigated. The landslide movement detected in the three scenes was evaluated by comparing with landslide movement measured by a total station. Although the measurement accuracy of landslide using the terrestrial laser scanner was worse than the total station, the scanning data showed the tendency of landslide movement of the test area.

  • PDF

Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves (레이저 스캐닝 및 정상파를 이용한 평판 구조물의 손상탐지)

  • Kang, Se Hyeok;Jeon, Jun Young;Kim, Du Hwan;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.401-407
    • /
    • 2017
  • This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

Investigation of Domestic and Foreign Forest Resource Management Status and Analysis of Laser Scanning Technology Application (국내외 산림자원관리 현황 조사 및 레이저 스캐닝 기술의 산림적용 방안 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.391-396
    • /
    • 2021
  • In this study, items for forest policy and forest resource research in Austria, Japan, New Zealand, and Indonesia, which are major forest advanced countries, were investigated, and the applicability of point cloud data acquired through laser scanning was identified. Through the study, it was found that forest policies in developed countries are being pursued for the purpose of sustainable forest conservation and management, job creation, and timber productivity improvement, and that new technologies are being researched and applied to actual projects. Korea has a high proportion of forests compared to the national land area compared to major forestry developed countries, but the accumulation of trees is relatively low, so it is a time for scientific forest management to improve the accumulation of trees. To understand the applicability of laser scanning technology, a forest resource survey using point cloud data was conducted, and the diameter of breast height, height, number of trees per unit area were calculated, and the shape of the crown was identified. If field experiments and accuracy evaluations applying various laser scanning technologies are carried out in the future, it will be possible to present the quantitative improvement of forest resource survey using foil cloud.

Rockwell Hardness Modeling Using Volumetric Variable (체적변수를 이용한 로크웰 경도 모델링)

  • Chin, Do-Hun;Oh, Sang-Rok;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.394-401
    • /
    • 2013
  • A new Rockwell hardness (HRC) model using a volumetric parameter by a least square and fractal interpolation method is suggested. The results are also investigated in comparison to real measured hardness data. For this purpose, the measurement of an indented volume is performed using a confocal laser scanning microscope (CLSM), and the captured height encoded image (HEI) is used as an original surface for the calculation of the indented volume. After configuring the surface, the constructed volume is calculated and used as an independent variable for HRC hardness modeling. The hardness model is established using an experimental modeling technique involving a least square algorithm and fractal interpolating model, and this suggested model can be used to reliably predict the Rockwell hardness. These techniques can also be applied to the modeling of the Brinnell and Vickers hardnesses using a volumetric variable.

Indented Surface Configuration and its Volume Calculation (압입 표면형상의 구현과 체적계산법)

  • Yang, Jae-Yong;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.708-713
    • /
    • 2012
  • The indented geometry for rockwell hardness indenter has been configured by using Confocal Laser Scanning Microscopy (CLSM). For this purpose, the CLSM can be well suited to construct the three-dimensional indented volume from the indented surface by rockwell hardness tester. Furthermore, the height data of HEI(height encoded image) by CLSM must be acquired at first and converted to indented surface later. And the indented surface patterns enable us to predict the indenter shape and volume. This volume can be used to study the rockwell hardness model as a volume parameter. As a result, the technique performed in this study by combining the CLSM with compensation technique is an excellent one to obtain the geometries of indented surfaces over a wide range of surface resolution in a micro scale. And it can be used for micro volume calculation.

Reflection-type Optical Waveguide Index Profiling Technique

  • Youk YoungChun;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.49-53
    • /
    • 2005
  • We report a new configuration of a reflection-type confocal scanning optical microscope system for measuring the refractive index profile of an optical waveguide. Several improvements on the earlier design are proposed; a light emitting diode (LED) at 650 nm wavelength instead of a laser diode (LD) or He-Ne laser is used as a light source for better index precision, and a simple longitudinal linear scanning and curve fitting techniques are adapted instead of a servo control for maintaining an optical confocal arrangement. We have obtained spatial resolution of 700 nm and an index precision of $2\times10^{-4}$. To verify the system's capability, the refractive index profiles of a conventional multimode fiber and a home-made four-mode fiber were examined with our proposed measurement method.