• 제목/요약/키워드: Laser range detector

검색결과 45건 처리시간 0.028초

405 nm 광원을 이용한 생물입자탐지기의 에어로졸 분석성능 (The performance of Bio-aerosol Detection System (BDS) with 405 nm laser diode)

  • 정영수;정유진;이종민;최기봉
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.25-31
    • /
    • 2017
  • This paper offer the characteristics for the detection and classification of biological and non-biological aerosol particles in the air by using laser-induced-fluorescence (LIF) based Bio-aerosol Detection System (BDS). The BDS is mainly consist of an optical chamber, in-outlet nozzle system, 405 nm diode laser, an avalanche photo detector (APD) for scattering signal and photomultiplier tubes (PMT) for fluorescence signals in two different wavelength range ; F1, 510-600 nm and F2, 435-470 nm. The detection characteristics, especially ratio of fluorescence signal intensity were examined using well-known components : polystylene latex (PSL), fluorescence PSL, $2{\mu}m$ of SiO2 micro sphere, dried yeast, NADH, ovalbumin, fungicide powder and standard dust. The results indicated that the 405 nm diode laser-based LIF instrument can be a useful bio-aerosol detection system for unexpected biological threaten alter in real-time to apply for dual-use technology in military and civilian fields.

광전도안테나에 의한 광대역테라헤르츠파의 발생특성 (Generation of Ultra-Wideband Terahertz Pulse by Photoconductive Antenna)

  • 진윤식;김근주;손채화;정순신;김지현;전석기
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.286-292
    • /
    • 2005
  • Terahertz wave is a kind of electromagnetic radiation whose frequency lies in 0.1THz $\~$10THz range. In this paper, generation and detection characteristics of terahertz (THz) radiation by photoconductive antenna (PCA) method has been described. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer. A mode-locked Ti:Sapphire femtosecond laser beam is guided and focused onto photoconductive antennas (emitter and detector) to generate and measure THz pulses. Ultra-wide band THz radiation with frequencies between 0.1 THz and 3 THz was observed. Terahertz field amplitude variation with antenna bias voltage, pump laser power, pump laser wavelength and probe laser power was investigated. As a primary application example. a live clover leaf was imaged with the terahertz radiation.

Standoff Raman Spectroscopic Detection of Explosive Molecules

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1668-1672
    • /
    • 2013
  • We developed a standoff Raman detection system for explosive molecules (EMs). Our system was composed of reflective telescope with 310 mm diameter lens, 532 nm pulse laser, and Intensified Charge-Coupled Device (ICCD) camera. In order to remove huge background noise coming from ambient light, laser pulses with nanosecond time width were fired to target sample and ICCD was gated to open only during the time when the scattered Raman signal from the sample arrived at ICCD camera. We performed standoff experiments with military EMs by putting the detector at 10, 20 and 30 m away from the source. The standoff results were compared with the confocal Raman results. Based on our standoff experiments, we were able to observe the peaks in the range of 1200 and $1600cm^{-1}$, where vibrational modes of nitro groups were appeared. The wave numbers and shapes of these peaks may serve as good references in detecting and identifying various EMs.

APPLICATION OF A MULTI-WAVELENGTH NIR DIODE LASER ARRAY FOR NON-DESTRUCTIVE FOOD ANALYSIS

  • Tauscher, Bernhard;Butz, Peter;Lindauer, Ralf
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.3123-3123
    • /
    • 2001
  • Near infrared (NIR) spectroscopy has become a widely used method in food and beverage analysis because of its speed, accuracy and the simplicity of sample preparation. One of the basic requirements of NIR instruments is a wide dynamic range if weak, or small, absorption changes or concentrations are to be measured. Thus the instrument must be sufficiently luminous, and efficient, to enable measurements to be made in a reasonably short time, as for some applications (e.g. sorting) short response times are essential. Diode lasers function the same way as lasers but linewidths are not as narrow as typical lasers. In this work an array of seven laser diodes (in the range of 750-1100 nm) with energy outputs of around hundred milliwatts each were combined with a fast diode array spectrometer (400-1100 nm, 1024 pixels, integration time from 3 ms) as detector. Measurements in transmission mode were performed in solutions of sugars in aqueous solutions and in deuteriumoxide. The feasibility of non-destructive measurements in transmission mode was investigated for different fruits and vegetables.

  • PDF

혼탁매질에서 광분포에 관한 Monte Carlo 시뮬레이션 (Monte Carlo Simulation on Light Distribution in Turbid Material)

  • 김기준;성기천
    • 한국응용과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.11-20
    • /
    • 1998
  • The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

구면 반사체를 이용한 3 자유도 변위 측정 기법 (A Measuring Method for 3-DOF Displacement by Using Spherical Reflector)

  • 권기환;문홍기;조남규
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2687-2694
    • /
    • 2002
  • A precision displacement measuring system is proposed, which can detect the 3-DOF translational motions of precision positioning devices. The optical system, which is composed of two diode-laser sources and two quadratic PSDs, is adapted to detect the position of the spherical reflector usually mounted on the platform of positioning devices. Each of the laser beams from diode-laser sources is reflected at the highly reflective surface of the sphere; hence, the 3-dimensional position of the sphere causes the directional change of the reflected beams, which is detected by the PSDs. In this paper, we define the relationships between the output values of the two PSDs and the 3-DOF translational motions of the sphere. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, measuring range, and measurement error. The results show that the proposed measuring method is very useful for the measurement of the precision displacement of 3-DOF micro motions.

고 분해능 레이저 도플러 진동계의 개발 (Development of High Resolution Laser Doppler Vibrometer)

  • 김성훈;고진환;김호성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권2호
    • /
    • pp.125-131
    • /
    • 2000
  • A high resolution Laser Doppler Vibrometer(LDV) developed using electronic fringe counting method. The fringe pattern signal obtained via analog signal processing is divided into two. One was converted to a TTL signal with a ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration. The other was directed to the A/D converter to get a high resolution of about $\lambda/320$ with the phase comparison method. The data obtained with the A/D converter was used in the displacement calculation and the result was displayed on a LCD pane. In this study, a Laser Doppler Vibrometer with measurement range of $0.32\mum~129\mum$ and displacement resolution of 2nm, about $\lambda/320$ , was developed. And this LDV can be used to measure the dynamic of microsize devices such as MEMS(Micro Electro-Mechanical Systems) and to diagnose high capacity electric equipment such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

고성능 광각 3차원 스캐닝 라이다를 위한 스터드 기술 기반의 대면적 고속 단일 광 검출기 (Large-area High-speed Single Photodetector Based on the Static Unitary Detector Technique for High-performance Wide-field-of-view 3D Scanning LiDAR)

  • 한문현;민봉기
    • 한국광학회지
    • /
    • 제34권4호
    • /
    • pp.139-150
    • /
    • 2023
  • 다양한 구조의 라이다(light detection and ranging, LiDAR)가 존재함에도 불구하고 넓은 화각을 유지하면서 장거리 측정과 수직, 수평 방향 모두에서 높은 해상도를 만족하는 LiDAR를 구현하는 것은 매우 어렵다. 스캐닝 구조는 장거리 탐지 및 수직, 수평 방향에 대한 높은 해상도를 만족하는 고성능 LiDAR를 구현하는 데 유리하지만, 넓은 화각을 확보하기 위해서는 검출 속도에 불리한 대면적 광 검출기(photodetector, PD)가 필수적이다. 따라서 이러한 문제점을 해결하기 위해 다수의 소면적 PD를 고속의 단일 대면적 PD로 작동할 수 있는 static unitary detector(STUD) 기술 기반의 PD를 제안하였다. 본 논문에서 제안하는 InP/InGaAs STUD PIN-PD는 1,256 ㎛×19 ㎛의 단위 면적을 가지는 32개 소면적 PD를 활용하여 1,256 ㎛×949 ㎛ 이내에서 다양한 형태로 설계 및 제작하였다. 이후 다양한 형태로 제작된 STUD PD의 특성과 감도는 물론 이를 활용한 LiDAR 수신 보드의 잡음 및 신호 특성에 대해 측정 및 분석하였다. 마지막으로 STUD PD가 적용된 LiDAR 수신 보드를 1.5-㎛ master oscillator power amplifier 레이저를 광원으로 활용하는 3차원 스캐닝 LiDAR 시제품에 적용하였고, 이를 통해 대각 32.6도의 광각에서 50 m 이상의 장거리 물체를 정밀하게 탐지하면서 320 px×240 px의 고해상도 3차원 영상을 동시에 확보하였다.

다축 수준기의 오차분석을 통한 측정 정밀도 향상 (Development of accuracy for the statical inclinometer by error analysis)

  • 이정근;박재준;조남규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1797-1802
    • /
    • 2005
  • In this study, we were developed an accuracy of the proposed two dimensional statical inclinometer what used a position sensitive detector(PSD) by an error analysis. The inclinometer consists of a laser source, a mass, an optic-fiber, and a PSD. The gravity direction on a base platform of the inclinometer is changed by an unknown inclination angle. And a laser spot is moved from the origin to another position of a PSD following a variation of an optical path by the gravity. These processes enable the inclinometer to estimate the inclination angle from distance information of the moving spot. A design methodology on the basis of a sensitivity analysis was applied to improve the measurement performance such as a full measuring range and a resolution. But it still has error factors, so we analyze the uncertainty of the inclinometer to evaluate the systematic errors from alignments, assembly error and so on. The experimental performance evaluation about the design objectives as a measuring range and a resolution was performed. And the validity and the feasibility of the design process were certified by an experimental process. Systematic errors eliminated to improve the accuracy of the inclinometer by the corrected measuring model from the calibration process between the inclination angle and the PSD position instead of the nominal measuring model. The ANOVA(analysis of variance) confirmed the effect of eliminating the systematic errors in the inclinometer. From these methodologies, the proposed inclinometer was able to measure with a high resolution(35.14sec) and a wide range(from $-15^{\circ}\;to\;15^{\circ}$

  • PDF