• Title/Summary/Keyword: Laser process

Search Result 2,460, Processing Time 0.031 seconds

LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments (실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성)

  • Roun Lee;Jeonghong Park;Seonghun Hong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.

Comparison on Autogenous Weldability of Stainless Steel using High Energy Heat Source (고에너지 열원에 따른 스테인리스강의 제살용접특성 비교)

  • Kim, Jong-Do;Lee, Chang-Je;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1076-1082
    • /
    • 2012
  • Today the welding for LNG carrier is known to be possible using arc and plasma arc welding process. But because of the lower energy density, arc welding is inevitable to multi-pass welding for thick plate and has a limit of welding speed compared to laser which is high energy density heat source. When thick plate is welded, weld defect by multi-pass welding and heat-affected zone by high heat-input were formed. Therefore one-pass welding by key-hole has been considered to work out the problems. It is possible for Laser, electron beam, plasma process to do key-hole welding. Nowadays, plasma process has been used for welding membrane of cargo tank for LNG carrier instead of arc process. Recently, many studies have examined to apply laser process to welding of membrane. In this paper, weldability, microstructure and mechanical properties of stainless steel for LNG carrier welded by fiber laser were compared to those by plasma. As a result, although the laser welding has several times faster speed, similar properties and smaller weld and heat affected zone were obtained. Consequently, this study proves the superiority of fiber laser welding for LNG carrier.

Effect on Tenascin Expression of Low Power Generating Laser Irradiation during Wound Healing Process (저출력 레이저가 창상치유과정에서 Tenascin 발현에 미치는 영향)

  • Sang-Bae Kim;Chong-Youl Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.1
    • /
    • pp.33-43
    • /
    • 1994
  • The purpose of this paper was to observe the influence of Ga-As semiconductor-low power generating laser on she appearance and actions of tenascin, extracellular matrix, as healing process of intentional wound on the experimental animals is taking place. 35 rabbits were divided into control and experimental group. ; and on each, 3mm-long and 2mm-deep, surgical wounds were created on buccal oral mucosa and thoracodorsal portion of skin. Ga-As laser was applied to the experimental group starting a day of the day the wounds were created , the laser was applied for 5 minutes every other day. Tissue samples were taken after the 2, 4, 7, 10, and 14 days after wound formation. Then tile healing process of experimental and control groups were observed and compared, using light microscope. Afterwards, the samples were immunohistochemical stained and again observed tenascin by quantitative measuring. The following results were obtained : 1. Tenascin was observed prevalently on epithelial cells, border area of dermis, and interstitial matrix between connective tissue layers in both experimental and control groups. 2. In oral mucosa, the experimental group showed significant increase in the appearance of tenascin after 4 days compared to the control group, but after 10 days, it decreased to a point which is even less than the control group. 3. In the skin samples, the pattern of appearance of tenascin was the same in both groups, but there was some difference concerning when the peak period was shown, In the experimental group, the peak period of tenascin expression was the 7 days after wound formation in epithelium and connective tissue. In the control group, the peak period was 10 days after. 4. In both the experimental and control groups, tenascin first appeared in the epithelium near the wound area and submucosa, and then spread on the underlying connective tissue. In conclusion, appearance of tenascin is closely related to regeneration of epithelium and development of granulation tissue : therefore, low power laser, which fastnes appearance of tenascin, is sure to faciltate healing process of oral mucosa.

  • PDF

A Study on the Optimal Design of Ti-6Al-4V Lattice Structure Manufactured by Laser Powder Bed Fusion Process (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 격자 구조물의 최적 설계 기법 연구)

  • Ji-Yoon Kim;Jeongmin Woo;Yongho Sohn;Jeong Ho Kim;Kee-Ahn Lee
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.146-155
    • /
    • 2023
  • The Ti-6Al-4V lattice structure is widely used in the aerospace industry owing to its high specific strength, specific stiffness, and energy absorption. The quality, performance, and surface roughness of the additively manufactured parts are significantly dependent on various process parameters. Therefore, it is important to study process parameter optimization for relative density and surface roughness control. Here, the part density and surface roughness are examined according to the hatching space, laser power, and scan rotation during laser-powder bed fusion (LPBF), and the optimal process parameters for LPBF are investigated. It has high density and low surface roughness in the specific process parameter ranges of hatching space (0.06-0.12 mm), laser power (225-325 W), and scan rotation (15°). In addition, to investigate the compressive behavior of the lattice structure, a finite element analysis is performed based on the homogenization method. Finite element analysis using the homogenization method indicates that the number of elements decreases from 437,710 to 27 and the analysis time decreases from 3,360 to 9 s. In addition, to verify the reliability of this method, stress-strain data from the compression test and analysis are compared.

Damage Effect on Glass Fibre Reinforced Plastics under Airflow by a Continuous Wave Laser (연속발진 레이저에 의한 공기 유동에 노출된 유리섬유 강화 플라스틱 손상효과)

  • Lee, Kwang Hyun;Shin, Wan-Soon;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.293-299
    • /
    • 2015
  • We analyzed the damage effect on Glass Fibre Reinforced Plastics(GFRP) under air flow by irradiation of continuous wave near-IR laser. Damage process and temporal temperature distribution were demonstrated and material characteristics were observed with laser intensity, surface flow speed and angle. Surface temperature on GFRP rapidly increased with laser intensity, and the damaged pattern was different with flow characteristics. In case of no flow, penetration on GFRP by burning and flame generation after laser irradiation was appeared at once. GFRP was penetrated by the heat generated from resin ignition. In case of laser irradiation under flow, a flame generated after burning extinguished at once by flow and penetration pattern on GFRP were differently shown with flow angle. From the results, we presented the damage process and its mechanism.

Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII) (TIRE-LII 기법을 이용한 매연 입자 크기에 관한 수치적 연구)

  • Kim, Jeong-Yong;Lee, Jong-Ho;Jeong, Dong-Soo;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1152-1157
    • /
    • 2004
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to see the effects of particle size, laser fluence on soot temperature characteristics and cooling behavior. Together with this, we focus on validating our simulation code by comparing with other previous results. Results of normalized LII signals obtained from various laser fluence conditions showed a good agreement with that of Dalzell and Sarofim's. It could be found that small particles cool faster at a constant laser fluence. And it also could be observed that vaporization is dominant process of heat loss during first 100ns after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.

  • PDF

Dissimilar Metal Welding of Nd:YAG Laser of Austenitic Stainless Steel and Medium Carbon Steel (중탄소강과 오스테나이트계 스테인레스강의 Nd:YAG 레이저의이종금속 용접)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1560-1565
    • /
    • 2005
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

  • PDF

A Study on the Feasibility of Partial Penetration Laser Welding for the Lap Joint of 390MPa High Strength Steel Sheets (390MPa급 고장력강판의 경치기 레이저 용접에서 부분용입 용접의 적용 가능성에 대한 연구)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • After high power lasers are avaliable in the commercial market, the number of applications of the laser welding has been increased in manufacturing industries. Although the tailored blank laser welding of butt jointed steel sheets is well known recently in the automotive industries, the lap joint laser welding is a new technology to the automotive manufacturing people as well as the design people. But the deep penetration laser welding seems to be preferred to the partial penetration welding for the lap joint welding in the automotive manufacturers because the partial penetration is a serious deflect for the butt joint. In this study, the feasibility of partial penetration welding fur the lap joint $CO_2$ laser welding was studied fur the 1mm thick 390MPa high strength steel sheets for automotive bodies. The process window of the lap joint partial penetration welding was obtained from experiments with the gap size and the welding speed as process parameters. The partial penetration welding was found excellent on the basis of the tensile shear strength and sectional geometry. The bead width, input energy Per volume, tensile-shear strength, deformation energy and the sectional geometries after tensile-shear tests of partial penetration welded specimens are compared with those of full penetration welded specimens with a series of gaps and welding speeds.

Characteristics of Si3N4 Laser Assisted Machining according to the Laser Power and Feed Rate

  • Kim, Jong-Do;Lee, Su-Jin;Suh, Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.963-970
    • /
    • 2010
  • This study makes an estimate of the laser-assisted machining (LAM) of an economically viable process for manufacturing precision silicon nitride ceramic parts using a high-power diode laser (HPDL). The surface is locally heated by an intense laser source prior to material removal, and the resulting softening and damage of the workpiece surface simplify the machining of the ceramics. The most important advantage of LAM is its ability to produce much better workpiece surface quality compared to conventional machining. Also important are its larger material removal rates and longer tool life. The cutting force and surface temperature were measured on-line using a pyrometer and a dynamometer, respectively. Tool wear, chips and the surface of the workpiece were measured using optical microscopy, and the surface and fractured cross-section of $Si_3N_4$ were measured by SEM. During the LAM process, the cutting force and tool wear were reduced and oxidation of the machined surface was increased according to the increase in the laser power. Moreover, the more the feed rate increased, the more the cutting force and tool wear increased.

Laser Direct Patterning of Photoresist Layer for Halftone Dots of Gravure Printing Roll (그라비아 인쇄물의 망점 형성을 위한 포토레지스터 코팅층의 레이저 직접 페터닝)

  • Seo, Jung;Lee, Je-Hoon;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 2000
  • Laser direct patterning of the coated photoresit (PMER-NSG31B) layer was studied to make halftone dots on gravure printing roll. The selective laser hardening of photoresist by Ar-ion laser(wavelength : 333.6nm∼363.8nm) was controlled by the A/O modulator. The coating thickness in the range of 5㎛∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines formed under laser power of 200∼260㎽ and irradiation time of 4.4∼6.6$\mu$ sec/point were investigated after developing. The hardened width increased according to the increase of coating thickness. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line widths of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

  • PDF