• Title/Summary/Keyword: Laser process

Search Result 2,473, Processing Time 0.032 seconds

A Study on Generation and Operation of Dynamic Pattern at Micro-stereolithography using $DMD^{TM}$ ($DMD^{TM}$를 이용한 마이크로 광 조형 시스템에서 다이나믹 패턴 생성 및 구동에 관한 연구)

  • Kim H.S.;Choi J.W.;Ha Y.M.;Kwon B.H.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1214-1218
    • /
    • 2005
  • As demands for precision parts are increased, existing methods to fabricate them such as MEMS, LIGA technology have the technical limitations like high precision, high functionality and ultra miniaturization. A micro-stereolithography technology based on $DMD^{TM}$(Digital Micromirror Device) can meet these demands. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D part is fabricated by stacking layers that are sliced as 2D section from STL file. Whereas in conventional method, the resin surface is cured as scanning laser beam spot according to the section shape, but in this research, we use integral process which enables to cure the resin surface at one time. In this paper, we deal with the dynamic pattern generation and $DMD^{TM}$ operation to fabricate micro structures. Firstly, we address effective slicing method of STL file, conversion to bitmap, and dynamic pattern generation. Secondly, we suggest $DMD^{TM}$ operation and optimal support manufacturing for $DMD^{TM}$ mounting. Thirdly, we examine the problems on continuous stacking layers, and their improvements in software aspects.

  • PDF

Development of Micro-stereolithography Technology using Metal Powder (금속 분말을 이용한 마이크로 광 조형 기술의 개발)

  • Lee J.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1155-1158
    • /
    • 2005
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. However, we do not anticipate the electric conductivity of the final product at the existing micro-stereolithography. The reason is that this technology uses polymer to make the product. Thus the new suspension which was mixed conventional photopolymer with metal powder was developed in this study. The developed suspensions were based on SL5180 which is commercialized resin and IMS03 that is made in our laboratory. And Triton X-100 was added at the suspension for getting the scattering effect and stabilizing effect. The layer recoating device was developed to be flat the mixed high viscosity suspension. A 3D micro structure was manufactured by using recoating system and micro-stereolithography system. The fabricated product was sintered to get the electric conductivity. After sintering, a pure copper product was made. In this study, new process was developed by making metal micro structure having an electric conductivity. This technology broadened the realm of the micro-stereolithography technology. And it will be applied to make the 3D micro structure of free form which has a high hardness and an electric conductivity in the near future.

  • PDF

A Change of Z-directional Structure in Multi-ply Sheet by Calendering (캘린더 처리에 의한 다층지의 두께방향 구조 특성 변화)

  • Youn, Hye-Jung;Lee, Hak-Lae;Chin, Seong-Min;Jung, Hyun-Do
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.23-32
    • /
    • 2005
  • A change of z-directional structural and surface properties by calendering has a great influence on liquid penetration into a sheet. It could be also important for multi-ply sheet because it contacts liquid dunhg coating or converting process. Therefore, this study was aimed to evaluate of a change of z-directional structure in multi-ply sheet by calendering. To do this, multi-ply sheets were prepared with various raw materials and calendered at the different pressure and temperature conditions. In multi-ply sheet which consisted of one kind of pulp fiber, thickness reductions were higher in top and bottom plies than in middle plies. And in the case of soft nip calender treatment with high temperature, top layer which was in contact with heating roll showed the highest reduction of thickness. Hard nip calender treatment showed U-shaped density profile in z-direction, but compression profile by SNC treatment was dependent on calendering condition. To examine z-directional structure of multi-ply sheet which was composed of different raw material for each layer, CLSM (Confocal Laser Scanning Microscopy) analyses were carried out on cross direction of sheet. It turned out to be a useful tool for investigating z-directional analysis. As a result, variation of thickness reduction in z-direction is dependent on ply structure, compressibility of pulp fiber, and calendering condition.

The Study of Restoration Technique of Wax-Treated Volume for the Annals of the Joseon Dynasty (III) -Evaluation of Durability of Korean Traditional Paper using Moist-heat Aging Treatment- (조선왕조실록 밀랍본 복원기술 연구(제3보) -습열열화처리를 이용한 복원용 한지의 내구성 평가-)

  • Jeong, Seon-Hwa;Jeong, Sun-Young;Seo, Jin-Ho;Jeong, So-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.49-55
    • /
    • 2013
  • To explore the paper materials for restoration of the Annals of the Joseon Dyansty, durability of the three type of the traditional Korean Papers were estimated in this study, through moist heat artificial aging test. Three types(D, F, and G) which showed the best preservation performance in dry heat and UV treatment in the previous study were selected and artificial accelerated aging treatment with moist-heat process was conducted; the viscosity change rate was D>G>F; folding endurance G>D>F; $L^*$ value F>D>G; $a^*$ and $b^*$ change rate D>G>F; brightness decrease rate D>G>F, suggesting paper F showed the least change rate in physical/optical properties. Also the CLSM image observation showed fair coherence among fibers and confirmed paper mulberry. And in FDI extraction from each sample, paper F showed the highest value. Overall, paper F (traditional glossy paper) showed the highest stability against thermal treatment. It confirms that paper F is suitable as restoration paper for tributary remains including the annals of the Joseon Dynasty for its steady strength/viscosity decrease rate and color change rate.

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

Measurement System for Phosphor Dispensing Shape of LED Chip Package Using Machine Vision (머신비전에 의한 LED Chip Package 형광물질 토출형상 측정)

  • Ha, Seok-Jae;Kim, Jong-Su;Cho, Myeong-Woo;Choi, Jong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2113-2120
    • /
    • 2013
  • In this study, an efficient machine vision based inspection system is developed for the in-line measurement of phosphor resin dispensing shapes on LED chip package. Since the phosphor resin (target material) has semitransparent characteristics, illuminated light beam is reflected from the bottom of the chip as well as from the surface. Since such phenomenon can deteriorate inspection reliability, a white LED and a 635nm laser slit beams are experimentally tested to decide suitable illumination optics. Also, specular and diffuse reflection methods are tested to decide suitable optical triangulation. As a result, it can be known that the combination of a white slit beam source and specular reflection method show the best inspection results. The Catmull-Rom spline interpolation is applied to the obtained data to form smoother surface. From the results, it can be conclude that the developed system can be sucessfully applied to the in-line inspection of LED chip packaging process.

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

Measurement of Geometric Errors of an Ultra Precision mMT Using PSDs (PSD를 이용한 초정밀소형공작기계의 기하학적 오차 측정)

  • Kwon, Seol-Ryung;Kweon, Sung-Hwan;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Ultra-precision miniaturized machine tools essential for manufacturing accurate machine components in micro/meso-scale have been developed. To realize high accuracy using mMTs, geometric errors, which are considered as the main sources of inaccuracy should be identified and compensated. The conventional systems for measuring geometric errors, such as a laser interferometer, can measure only one geometric error in a single setup and they involve complicated measurement procedures. A measurement system using PSDs is a promising alternative but the measurable range of such systems is limited to the active range of the PSDs. The proposed measurement system using PSDs can overcome the limit of small measurable range. Further, the mounting errors that could occur during set-up process can be avoided. In this paper, an algorithm corresponding to the system was analyzed and experiments were carried out.

Reliability Evaluation System of Hot Plate for Photoresist Baking (Hot Plate 신뢰성 시험.평가시스템 개발)

  • Song, Jun-Yeop;Song, Chang-Gyu;No, Seung-Guk;Park, Hwa-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.180-186
    • /
    • 2002
  • Hot Plate is the major unit that it used to remove damp of wafer surface, to strength adhesion of photoresist (PR) and to bake coated PR in FAB process of semiconductor. The badness of Hot Plate (HP) has directly influence upon the performance of wafer, it is necessary to guarantee the performance of HP. In this study, a reliability evaluation system has been designed and developed, which is to measure and to estimate thermal uniformity and flatness of HP in range of temperature 0~$250^\circC$. This system has included the techniques which measures and analyzes thermal uniformity using infrared thermal vision, and which compensates measuring error of flatness using laser displacement sensor For measuring flatness, a measurement stage of 3 axes are developed which adapts the precision encoder. The allowable error of this system in respect of thermal uniformity is less $than\pm0.1^\circC$ and in respect of flatness is less $than\pm$1mm . It is expected that the developed system can measure from $\Phi200mm\;(wafer 8")\;to\;\Phi300mm$ (wafer 12") and also can be used in performance test of the Cool Plate and industrial heater, etc.

The Optimization of Offset Printing Process for High Quality Color Reproduction(II);Platemaking and Presswork (고품질 색재현을 위한 오프셋인쇄 공정의 최적화에 관한 연구(II);제판과 인쇄공정을 중심으로)

  • Kim, Sung-Su;Kang, Sang-Hoon
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2007.11a
    • /
    • pp.13-28
    • /
    • 2007
  • Producing printing plate is essential progress to do offset printing. In this Film-less period, the more PS plate becomes extinct, the more the age of the Plate-Making of Exposure declines the place to stand. To do offset printing, the CTP (Computer to Plate) is taking a place of PS plate that covers speed, quality and economical problems. The biggest advantage of using CTP is that laser directly goes to the plate, thus there are no dust from the Plate-Making of Exposure. It is also theoretically able to print 200lpi${\sim}$300lpi as well as print 1751pi, because it has over 2400dpi resolution. The high quality printing could be available inside of the country, if printing machine keeps the optimum condition in offset printing. The CTP has many advantages, however there is a difficulty for the operators to preserve the equipment. The actual circumstance is that they cannot make a decision about how many dots need to be generated, and also it is necessary to know how to establish the setup at RIP on CTP to make the optimum condition output. If offset printing machine keeps the optimum condition, it would be able to print up to high quality printing however it is hard to comment what is the optimum condition for the printing machine. Anyone could say easy subjectively that machine is in the optimum condition, however it is objectively hard to estimate by number. In this research GATF / Plate Test target used to analyze the image and to make numerical value of the optimum condition of the CTP. It also used GATF / The sheep fed test printing 5.0 to know the density of the color representation, dot gain and gray balance for the optimum condition of the print machine. The purpose of this research is to represent the ISO 12647-2 which is the international standard with domestic printing equipments.

  • PDF