• Title/Summary/Keyword: Laser principles

Search Result 60, Processing Time 0.026 seconds

Microlasers and Microfilters: Principles and Possible Applications

  • Chang, Richard K.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.1-1
    • /
    • 2001
  • Microlasers grown on a chip without any distributed Brags reflectors to provide the feedback are potentially useful for integrated optics, particularly if the laser emission in the plane is unidirectional and this direction can be switched. Microfilters performing as add/drop devices and bandpass units are now considered the most needed optical element for the DWDM field. The talk will concentrate on our research effort in GaN microlasers with non-circular shapes and in dielectric microfilters with oval and square shapes. (omitted)

  • PDF

Principles and Prospect of Speckle Pattern Interferometry (스페클 간섭계의 원리와 전망)

  • 강영준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.7-13
    • /
    • 2004
  • 간섭성 광원인 레이저를 이용한 계측 및 검사기법 중 대표적인 것이 홀로그래피를 이용한 간섭법(Holographic Interferometry, HI)이다. HI는 레이저 파장을 단위로 하기 때문에 물체변형에 대해 측정감도가 좋고 비파괴 비접촉의 계측이 가능하다. 또한 삼차원 정보 추출이 가능해서 주어진 간섭무늬로부터 전 영역의 변형을 구할 수 있다는 커다란 장점을 가지고 있다. 그러나 일반적으로 홀로그래피용 필름은 기록 및 현상방법이 성가시고 그 속도 또한 느릴 뿐만 아니라 간섭무늬 패턴도 매우 복잡해서 산업현장 등 실제의 응용에는 현실적인 어려움이 있다.(중략)

Output power characteristics of a CW Nd:YVO4/KTP laser pumped by a tunable Ti:Sapphire laser (파장가변 티타늄 사파이어 레이저로 펌핑하는 연속발진 Nd:YVO4/KTP 레이저의 출력 특성)

  • 추한태;안범수;김규욱;이치원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.140-145
    • /
    • 2002
  • We measured the absorption rate of a Nd:YVO$_4$crystal with a thickness of 1 mm and the output power characteristics of a cw Nd:YVO$_4$/KTP laser with respect to the change of wavelength and the polarizations of a tunable Ti:sapphire pump laser with a linewidth of 0.2 nm. In the case of S-polarization (E┴$\pi$) and P-polarization (E∥$\pi$) of a pump laser, the maximum absorption rate of the crystal was 82% at 809.4 nm and 98% at 808.8 nm, and slope efficiencies for the output power of the Nd:YVO$_4$laser (1064 nm) were 43% and 52%, respectively. The maximum Nd:YYO$_4$laser output power of 516 mW was obtained from the P-polarization pump laser of 1000 mW. As a result of an intracavity frequency-doubling, slope efficiency for the output power of the Nd:YVO$_4$/KTP green laker (532nm) was 23% and the maximum output power of 205 mW with the beam quality (M$^2$) of 1.42 was obtained from the P-polarization pump laser of 1000 mW.

Intracavity frequency doubling of a single-mode Nd:YAG laser using a nonplanar ring cavity (비평면 고리형 공진기를 이용한 단일 모드 Nd:YAG 레이저의 내부 공진기 주파수 배가)

  • 박종락;윤태현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2003
  • Intracavity frequency doubling of a single-mode Nd:YAG laser by using a nonplanar ring cavity is demonstrated. The nonplanar ring cavity consists of a Brewster-angled Nd:YAG crystal placed in a magnetic field, a KTP crystal, and two spherical mirrors. In this design the Nd:YAG block acts as both a nonreciprocal polarization rotator and a partial polarizer, and the nonplanar portion of the ring cavity, which is formed by a relative twist angle between the Brewster-angled end surfaces of the Nd:YAG block, serves as a reciprocal polarization rotator. An eigenpolarization theory for the cavity configuration is presented and suitable values of the relative twist angle for unidirectional operation are estimated. A single-mode output power of 22 ㎽ at 532 nm and an optical to optical conversion efficiency of 1.8% are obtained with a 1.2 W diode laser at 809 nm.

Design and operational characteristics of cw and KLM Ti : sapphire lasers with a symmetric Z-type cavity configuration (Z-형태의 대칭형 레이저 공진기 구조를 갖는 연속 발진 및 Kerr-렌즈 모드-록킹되는 티타늄 사파이어 레이저의 설계와 동작 특성)

  • Choo, Han-Tae;Ahn, Bum-Soo;Kim, Gyu-Ug;Lee, Tae-Dong;Yoon, Byoung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.347-355
    • /
    • 2002
  • We have constructed a high efficiency and broad tunable cw Ti:sapphire laser with a four-mirror symmetric Z-type laser cavity to increase the laser usability. From theoretical analyses and experimental data for a symmetric Z-type laser cavity containing a Kerr medium, the cavity mode size and the Kerr-lens mode-locking (KLM) strength for KLM lasers can be confirmed as function of the position in the cavity, the intracavity laser power, and the stability parameter. As a result, the slope efficiency and the maximum average output power of cw Ti:sapphire laser at 5 W pumping power of Ar-ion laser were 31.3% and 1420 ㎽ respectively. The tunablility was ranged from 730 ㎚ to 908 ㎚ with average output power above 700 ㎽. We obtained the KLM operation easily by self-aperturing effect in the Kerr medium and the slope efficiency and the maximum average output power of KLM Ti:sapphire laser was 16% and 550 ㎽ respectively. The spectral bandwidth was 33 ㎚ at the center wavelength of 807 ㎚ and the pulse width was 27 fs with a repetition rate of 82 ㎒.

Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer (레이저진동계를 사용한 동조액체댐퍼의 액체 진동 측정)

  • Shin, Yoon-Soo;Min, Kyung-Won;Kim, Junhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.513-519
    • /
    • 2016
  • In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.

Deformation Analysis of Impact Damaged Composite Tube Using Thermal Shearography

  • Kim, Koung-Suk;Chang, Ho-Seob;Jang, Su-Ok;Lee, Seung-Seok;Jang, Wan-Sik;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.302-308
    • /
    • 2008
  • Composite materials are widely used as structural materials for aerospace engineering because of its excellent mechanical properties such as light weight, high stiffness, and low thermal expansion. In driving, impact damage is one of the common but dangerous damages, caused by internal failure of the laminas interface which is not detected by in the surface. Many techniques to detect defects or delaminate between laminates have been reported. Shearography is a kind of laser speckle pattern interferometry with the advantages of non-destructive, non-contact, high resolution and displacement slope measurement. In this paper, the shearography is used to evaluate non-destructively impact damaged surface of the composite material and a measuring method using shearography for the thermal deformation of a impact damaged composite material is discussed. The basic principles of the technique are also described briefly.

Low Cost Omnidirectional 2D Distance Sensor for Indoor Floor Mapping Applications

  • Kim, Joon Ha;Lee, Jun Ho
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.298-305
    • /
    • 2021
  • Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150-1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150-1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.

Review on the Capillary Destruction of Telangiectasia, and the Clinical Applications Using Modern Methods in Korean Medicine (모세혈관확장 치료에 있어서 혈락자파법에 대한 고찰 및 한의임상에서 현대적 활용 전망)

  • Jang, Insoo;Song, Beomyong;Lee, Eunhee;Lee, Donghyo;Seo, Hyungsik;Koo, Sungtae
    • Korean Journal of Acupuncture
    • /
    • v.31 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Objectives : The capillary destruction has frequently been used to treat telangiectasia in Korean Medicine. The objective of this study was to review of related literature concerning the capillary destruction as treatment for telangiectasia, and to discuss the clinical application of medical devices in accordance with the principles of Korean Medicine. Methods and Results : An extensive traditional literature including Huangdi Neijing were reviewed for identification of relevant evidence for treating telangiectasia. The telangiectasia is simply defined as a dilated, superficial blood vessel. It is called as the tertiary collateral vessel, superficial collateral vessel or Hyulrak(small superficial collateral vessel). The telangiectasia could be due to disturbances in the circulation of qi and blood. According to Huangdi Neijing, one of the oldest traditional literature published in 4th century B.C. through the first century A.D., it is needed to get rid of the vessel by the capillary destruction for treating telangiectasia using lance needle, shear needle, stiletto needle or moxibustion. Several studies have examined that intense pulsed light or laser as new therapeutic tools could have an sufficiently impact on aspects of improving the effectiveness of the capillary destruction. Conclusions : The capillary destruction for the treatment of telangiectasia has been used since two thousand years ago. We suggested that medical devices, such as intense pulsed light or laser, should be used to treat telangiectasia as a safe and convenient intervention in clinical practice of Korean Medicine.

Raman Chemical Imaging Technology for Food and Agricultural Applications

  • Qin, Jianwei;Kim, Moon S.;Chao, Kuanglin;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.170-189
    • /
    • 2017
  • Purpose: This paper presents Raman chemical imaging technology for inspecting food and agricultural products. Methods The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. Results & Conclusions: The main topics include Raman scattering principles, Raman spectroscopy measurement techniques (e.g., backscattering Raman spectroscopy, transmission Raman spectroscopy, and spatially offset Raman spectroscopy), Raman image acquisition methods (i.e., point-scan, line-scan, and area-scan methods), Raman imaging instruments (e.g., excitation sources, wavelength separation devices, detectors, imaging systems, and calibration methods), and Raman image processing and analysis techniques (e.g., fluorescence correction, mixture analysis, target identification, spatial mapping, and quantitative analysis). Raman chemical imaging applications for food safety and quality evaluation are also reviewed.