• Title/Summary/Keyword: Laser plasma accelerator

Search Result 9, Processing Time 0.023 seconds

Review of laser-plasma physics research and applications in Korea

  • W. Bang;B. I. Cho;M. H. Cho;M. S. Cho;M. Chung;M. S. Hur;G. Kang;K. Kang;T. Kang;C. Kim;H. N. Kim;J. Kim;K.B. Kim;K. N. Kim;M. Kim;M. S. Kim;M. Kumar;H. Lee;H. W. Lee;K. Lee;I. Nam;S. H. Park;V. Phung;W. J. Ryu;S. Y. Shin;H. S. Song;J. Song;J. Won;H. Suk
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.698-716
    • /
    • 2022
  • Laser plasmas can be produced when high-power laser beams are focused in matter. A focused laser beam of TW(terawatt)-level high power has an extremely strong electric field, so neutral atoms are immediately ionized by the laser electric field, leading to a laser-produced plasma. The laser plasma can be produced by small table-top TW lasers based on the CPA (chirped-pulse amplification) technique, and now they are rather easily available even in university laboratories. In Korea, there are several CPA-based TW (or even petawatt) lasers in a few institutions, and they have been used for diverse laser plasma physics research and applications, including the laser acceleration for electrons and ions, high-power THz (tera-hertz) generation, advanced light sources, high-energy-density plasmas, plasma optics, etc. This paper reviews some of the laser plasma physics research and applications that have been performed in several universities and research institutes.

RECENT PROGRESS ON LASER DRIVEN ACCELERATORS AND APPLICATIONS

  • LEEMANS W. P.;ESAREY E.;GEDDES C.G.R.;SCHROEDER C. B.;TOTH CS.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.447-456
    • /
    • 2005
  • Laser driven accelerators promise to provide an alternative to conventional accelerator technology. They rely on the excitation of large amplitude density waves in a plasma by the photon pressure of an intense laser. The density oscillations in which electrons and ions are separated, result in extremely large longitudinal electric fields that can be several orders of magnitude larger than those that are used in today's radio-frequency accelerators. Whereas this principle had been demonstrated experimentally for nearly two decades, it was not until 2004 that the production of high quality electron beams around 100 MeV was demonstrated. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, are the keys to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short and long term prospects for intense radiation sources and high energy accelerators based on laser-drivenplasma accelerators.

Plasma Channel Expansion in a Laser-Induced Plasma (LIP) Using a Focused Laser Beam (집속된 레이저빔에 의한 레이저 유도 플라즈마 채널의 형성 및 팽창에 관한 연구)

  • Kim, Jong-Uk;Kim, Chang-Bum;Kim, Guang-Hoon;Lee, Hae-June;Hyyong Suk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.240-241
    • /
    • 2002
  • Propagation of an intense laser pulse through fully ionized plasma has been an interesting topic in many fields. It includes laser-driven electron accelerators,(1) generation of high harmonics,(2) soft x-ray laser development(3) and so on. Specifically, in the application of laser-driven electron accelerators a large laser-plasma interaction length is required to get sufficient acceleration energy of electron. (omitted)

  • PDF

Visualization of Scattered Plasma-based Particle Acceleration Data (산포된 플라즈마 기반의 가속입자 자료 가시화)

  • Shin, Han Sol;Yu, Tae Jun;Lee, Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 2015
  • Particle accelerator has mainly used in nuclear field only because of the large scale of the facility. However, since laser-plasma particle accelerator which has smaller size and spends less cost developed, the availability of this accelerator is expended to various research fields such as industrial and medical. This paper suggests a visualization system to control the laser-plasma particle accelerator efficiently. This system offers real-time 3D images via convert HDF file comes from plasma data obtained from PIC simulation into OpenGL texture type to analyse and modify plasma data. After that, it stores high-resolution rendering images of the data with external renderer hereafter.

Numerical Study on Laser-driven In-Tube Accelerator (LITA) Performance using a Plasma Size Modeling

  • Kim, Sukyum;Toshiro Ohtani;Akihiro Sasoh;Jeung, In-Seuck;Park, Jeong--Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.320-324
    • /
    • 2004
  • Laser Propulsion is a device that generates thrust using laser energy. Laser-driven In-Tube Accelerator (LITA) has been developed at Tohoku University. LITA is a laser propulsion system that accelerates an object not in an open air but in a tube. Experiments of vertical launching and pressure measurement on the tube wall were carried out and in order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this study, the time variation of pressure on the tube wall is numerically simulated solving Euler equation. In order to model the laser energy, heat source function added to the frozen flow Euler equation. Plasma size from the shadowgraph images was used for the initial condition of laser energy input. For verification of the modeling, these results were compared with the previous experimental and numerical results. From these verifications, an analysis of LITA performance will be investigated.

  • PDF

Terahertz emission from a plasma dipole oscillation

  • Min Sup Hur;Manoj Kumar;Hyung Seon Song;Teyoun Kang
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.852-858
    • /
    • 2022
  • We studied an unrevealed characteristic of radiation emission from a localized plasma oscillator (plasma dipole oscillation-PDO). PDO is a novel concept of generating terahertz emission from a laser plasma-based system. The electromagnetic field generated by a PDO embedded in a uniform plasma, instead of being cut off by the ambient plasma as expected by a common but misleading sense, propagates long distances to escape the plasma eventually. The PDO-THz, differently from other laser plasma-based THz sources, utilizes the collective behavior of the plasma (plasma oscillations) and, accordingly, produces a quasi-narrow-band emission, which can potentially be useful in THz-based accelerator or THz-pump and probe experiments. We verified the PDO mechanism by using realistic three-dimensional particle-in-cell simulations.

Betatron Radiation of an Off-axis Injected Electron in a Laser Wakefield Accelerator

  • Hwang, Seok-Won;Lee, Hae-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.86-91
    • /
    • 2009
  • The electrons injected into a laser wakefield undergo betatron oscillation and give rise to the emission of intense X-ray radiation. To investigate the generation conditions of the X-rays, the relativistic motion of an electron injected in an off-axis position has been simulated with wakefield profiles which are pre-calculated with a two-dimensional particle-in-cell code. The wakefield with a plasma density of $1.78{\times}10^{18}\;cm^{-3}$ is generated by the laser with an intensity of $1.37{\times}10^{18}\;W/cm^2$ and a pulse width of 30 fs. From the calculation of the single particle motion, the characteristics of the betatron radiation are investigated in the time domain. As the transverse injection position increases, the power and the duration time of the radiation increase, but the width of each pulse decreases.

Laser Acceleration of Electron Beams to the GeV-class Energies in Gas Jets

  • Hafz, Nasr A.M.;Jeong, Tae-Moon;Lee, Seong-Ku;Choi, Il-Woo;Pae, Ki-Hong;Kulagin, Victor V.;Sung, Jae-Hee;Yu, Tae-Jun;Cary, John R.;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • In a laser-plasma wakefield accelerator, the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal wave or plasma bubble in a way similar to the excitation of a wake wave behind a boat as it propagates on the water surface. Electric fields inside the plasma bubble can be several orders of magnitude higher than those available in conventional RF-based particle accelerator facilities which are limited by material breakdown. Therefore, if an electron bunch is properly phase-locked with the bubble's acceleration field, it can gain relativistic energies within an extremely short distance. Here, in the bubble regime we show the generation of stable and reproducible sub GeV, and GeV-class electron beams. Supported by three-dimensional particle-in-cell simulations, our experimental results show the highest acceleration gradients produced so far. Simulations suggested that the plasma bubble elongation should be minimized in order to achieve higher electron beam energies.

Laboratory Astrophysics using Intense X-ray from Free Electron Lasers

  • Chung, Moses
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.65.4-65.4
    • /
    • 2017
  • The laboratory astrophysics is a new emerging field of basic sciences, and has tremendous discovery potentials. The laboratory astrophysics investigates the basic physical phenomena in the astrophysical objects in controlled and reproducible manners, which has become possible only recently due to the newly-established intense photon and ion beam facilities worldwide. In this presentation, we will introduce several promising ideas for laboratory astrophysics programs that might be readily incorporated in the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). For example, precise spectroscopic measurements using Electron Beam Ion Trap (EBIT) and intense X-ray photons from the PAL-XFEL can be performed to explore the fundamental processes in high energy X-ray phenomena in the visible universe. Besides, in many violent astrophysical events, the energy density of matter becomes so high that the traditional plasma physics description becomes inapplicable. Generation of such high-energy density states can be also be achieved by using the intense photon beams available from the PAL-XFEL.

  • PDF