• Title/Summary/Keyword: Laser ignition

Search Result 54, Processing Time 0.041 seconds

Aluminum ignition in laser-generated aluminum particles in high temperature and high pressure environment (고온 고압 환경에서 레이저를 이용한 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Park, Jeong Su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.101-103
    • /
    • 2012
  • Characteristic of aluminum ignition under high temperature and high pressure is studied using lasers. The laser ablation method is used to generate aluminum particles exposed to a high pressure by using a nanosecond pulsed laser where the range of ablation pressure varies between 0.35 and 2.2 GPa. A $CO_2$ laser is used to supply radiative heat to the aluminum target surface for providing high temperature ranging between 5000~9300 Kelvin. The ignition is confirmed using spectroscopy analysis of AlO vibronic band 484 nm wavelength. Also the radiative temperature is measured in various high pressure range for tracing the ignition temperature in high pressure conditions.

  • PDF

Combustion Enhancemen of Premixed Mixtures Using Laser-Induced Cavity Ignition (레이저 유도 공동 점화방식을 이용한 예혼합기 연소 특성 향상)

  • 모하메드하산;고영성;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.8-16
    • /
    • 1999
  • In this study, a new type of laser-induced ignition using a conical cavity has been developed to utilize all the available incident laser energy. In the method, it is possibile to ignite combustible methane/air mixtures by directing a laser beam of a constant small diameter into a small conical cavity, without focusing the laser beam. Shadow graphs for the early stage of combustion process show that a hot gas jet is ejected from the cavity, especially with lean mixture. After a very show time, the hot gas jet finishes issuing and the flame behavior is quite similar to flame propagation initiated by a conventional spark ignition. The combustion process using the new method exhibits more rapid pressure increase and a higher maximum pressure rise than that of the center ignition using laser-induced spark, with significant decrease in the combustion time. Also, the new ignition method is numerically modeled to simulate the flame kernel development and subsequent combustion process using the KIVA-IIcode. The calculated results show satisfactory agreement with experimental results.

  • PDF

Aluminum particle ignition characteristics at high pressure condition up to 2 GPa (최대 2 GPa 고압 환경에서 알루미늄 입자의 점화 특성 연구)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.5-8
    • /
    • 2013
  • The ignition of aluminum particles under high pressure and temperature conditions is studied. The laser ablation method is used to generate aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave $CO_2$ laser is then used to heat surface of the aluminum target until ignition is achieved. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength. The radiant temperature is measured with respect to various pressures for tracing of required heating energy for ignition. Then the ignition temperature is deduced from the radiant temperature using the thermal diffusion equation. The established ignition criteria for corresponding temperature and pressure can be used in the modeling of detonation behavior of heavily aluminized high explosives or solid propellants.

  • PDF

High energy laser heating and ignition study

  • Lee, K.C.;Kim, K.H.;Yoh, J.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.525-530
    • /
    • 2008
  • We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short(femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives are used. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine(RDX), triaminotrinitrobenzene(TATB), and octahydrotetranitrotetrazine(HMX) are compared to experimental results. The experimental and numerical results are in good agreement.

  • PDF

Generation and ignition of micro/nano - aluminum particles using laser (레이저를 이용한 마이크로/나노 알루미늄 입자 생성과 점화)

  • Lee, Kyung-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.429-434
    • /
    • 2012
  • Ignition delay of micro/nano aluminum particles is caused by aluminum oxide shell. The method of minimizing this ignition delay is proposed in the study. Generating and heating of particles are processed at the same time. As soon as heated particles are produced, they immediately contact with oxygen. Chemical reaction is induced on the contact surface instead of crystallization of oxide shell. Finally particles are ignited. Aluminum particles are generated by laser ablation on an aluminum plate using Nd:YAG pulse laser. Injected particles are confirmed through visualization of particles using scattering method. $CO_2$ continuous laser supplies heat to aluminum plate and generated particles. Trace of burning particles is observed in the experiment.

  • PDF

고에너지원을 이용한 폭발 현상 모델링

  • Lee, Gyeong-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.349-352
    • /
    • 2007
  • In this paper, we describe the modeling of ablation based laser applications for innovative use in the military In the laser ignition system, a metal confinement is ablated with the high intensity pulsed energy, triggering a thermal ignition of the confined high explosives. The constitutive equations for the laser source, deformation of metals, and explosion of energetic materials are described.

  • PDF

A Study on the Effects of Ignition Energy and Systems on the Flame Propagation in a Constant Volume Combustion Chamber (정적연소기에서 점화에너지와 점화장치가 화염전파속도에 미치는 영향에 관한 연구)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 2001
  • A constant volume combustion chamber is employed to investigate the initial flame kernel development and flame propagation of gasoline-air mixtures with various ignition systems, ignition energy and spark plug electrodes. To do this research, four ignition systems are designed and manufactured, and the ignition energy is controlled by varying the dwell time. Several kinds of spark plugs are also made to analyze the effects of electrodes on flame kernel development. The velocity of flame propagation is measured by the laser deflection method. The output laser beam from He-Ne laser is divided into three parallel beams by a beam splitter. The splitted beams pass through the combustion chamber. They are deflected when contacted with flame front, and the voltage signals from photodiodes change due to deflection. The results show that higher ignition energy raises the flame propagation speed especially under the fuel lean operation. The wider electrode gap, smaller electrode diameter and sharper electrode tip make the speed of the initial flame propagation faster. The speed of the initial flame propagation is affected by electrode material as well. Electrode material with lower melting temperature help the initial flame propagation.

  • PDF

Modeling of high energy laser heating and ignition of high explosives (고출력 레이저에 의한 가열과 폭약의 점화 모델링)

  • Lee, Kyung-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • We present a model for simulating high energy laser heating of metal for ignition of energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short (femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of RDX, TATB, and HMX are compared to experimental results. The experimental and numerical results are in good agreement.

Incidental Ignition of a Pulsed Dye Laser Fiber During Laryngomicrosurgery : A Case Report

  • Suh, Yun Suk;Lee, Eun Jung;Kim, Min Ki;Choi, Hong-Shik
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.27 no.1
    • /
    • pp.51-53
    • /
    • 2016
  • Surgical fires require an ignition source, oxidizer, and fuel. The pulsed dye laser (PDL) has been shown to be effective in the treatment of hypertrophic scars and keloids in dermatology. With the increasing number of applications of $CO_2$, laser as ignition source has been associated with operating room fires in the otorhinolaryngologic field. There have been many case reports on PDL-induced fires in dermatology, but until now, there were no reports in the larynx. We describe a 57-year-old patient diagnosed with laryngeal hyperkeratosis treated by PDL-assisted laryngomicrosurgery. In this case, we experienced incidental PDL tip flaring during pulsed dye laser vaporization.

  • PDF

2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine (가솔린엔진에서의 2차원 화염 가시화)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF