• 제목/요약/키워드: Laser forming process

검색결과 78건 처리시간 0.028초

유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작 (Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis)

  • 고대철;이찬주;김병민
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

레이저 성형에서 시편의 기하학적 형상에 따른 변형의 양상에 관한 연구 (Effect of Specimen Geometry on deformation in laser forming of sheet metal)

  • ;성우제;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.22-22
    • /
    • 2009
  • Laser forming is a promising technology in manufacturing, such as in the shipbuilding, automobile, microelectronics, aerospace and other manufacturing industries. This process forms the sheet metal by utilization of laser-induced thermal stresses. Laser forming process has been studied extensively for rectangular shape geometry. This basic study presents the change in deformation behavior of sheet metal during transition from linear to curved geometries and irradiations as well. A series of experiments have been conducted on a wide range of specimen geometries such as quarter-circular and half circular plate. The reasons for this behavior have been analyzed. Results are compared and analyzed by simulations using ABAQUS. Influence of developed stresses on the bending has been investigated. This study provides the more understanding of forming mechanism influenced by geometry effect.

  • PDF

DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구 (Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation)

  • 송정한;장야징;이종섭;박성준;최두순;이근안
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

기하학적 정보를 이용한 이중곡률 형상의 레이저 성형 (Laser Forming of Sheet Metal by Geometrical Information)

  • 김지태;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.91-93
    • /
    • 2005
  • Forming sheet metal by laser-induced thermal stresses (laser forming) has been extensively studied, and the research has focused on two-dimensional geometries using a multi-pass straight line scan. Recently there came out some useful studies or three-dimensional laser forming which is applied to doubly curved shapes. The task of 3D laser forming sheet metal is to determine a set of process parameters such as laser scanning paths, laser power and scanning speed that will make a given shape. New method for laser forming of a doubly curved surface by using geometrical information was proposed and verified by experiments. This method shows good performance in the sense of calculation time and accuracy compared to the inherent strain method.

  • PDF

수중 레이저 굽힘시 SUS430/Cu/SUS430 복합판재 성형 특성 분석 (Parameter Characterization for Underwater Laser forming of SUS430/Cu/SUS430 Laminated Composite Layer)

  • 박성환;오일영;한상욱;우영윤;황태우;;문영훈
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.35-40
    • /
    • 2017
  • Laser forming is an advanced process in sheet metal forming in which thermal stress originated from the laser heat source is used to shape the metal sheet. However, substantial waiting time is normally necessary for the workpiece to cool down between consecutive scans so that a steep temperature gradient can be reestablished in the next scan. In order to solve this drawback, laser bending characteristics are experimentally implemented in underwater condition. Laser forming effects under various conditions, including different laser power, scanning velocity, beam diameter, number of passes and material, are investigated. The results show that the underwater laser forming facilitates deliberate forming. The bending angle per respective laser scan is decreased with increasing the number of passes and scanning velocity.

용접부를 고려한 레이저 합체박판 성형공정의 3차원 유한요소 해석 (3-D FEM Analysis of Forming Process for Laser Welded Blank Considering Welded Zone)

  • 금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 추계학술대회논문집
    • /
    • pp.14-17
    • /
    • 1999
  • The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welded zone(WZ) is modelled with several narrow finite elements whose material characteristics are analytically obtained from those of base metals based on the tensile tests. In order to show the reliability and effectiveness of weld element the forming process of hemispherical dome stretching and auto-body door inner panel stamping are simulated FEM predictions show good agreements with experimental observations.

  • PDF

레이저 직접금속성형기술을 이용한 금형재 표면보수 특성 연구 (Characterization of Direct Laser Metal Forming Technology for the Restoration of Mold Surface)

  • 손영명;장정환;주병돈;임홍섭;문영훈
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.681-686
    • /
    • 2009
  • Direct laser metal forming technology was applied to restore the damaged mold surface. In order to estimate melting characteristics of the $20{\mu}m$ Fe-Cr-Ni powder, single layer experiments were performed at various levels of heat input. The process window of the $20{\mu}m$ Fe-Cr-Ni powder provided feasible process parameters for the smooth regular surface. The cross hatching scanning strategy on the multiple layer experiment was performed to reduce the thickness non-uniformity of edge portions compared with the one direction scanning. To estimate the coherence between the melted powder and the basematal, the tendency of hardness distribution has been observed. The hardness of the melted and the remelted zone was distributed from 400HV to 600HV. It is over 2 times compared of the hardness of the basemetal. Experimental results show that the mold restoring process using direct laser metal forming can be successfully applied in the mold repair industry.

펨토초레이저를 이용한 알루미늄 성형다이의 미세가공에 관한 연구 (Die Surface Texturing by Femtosecond Laser for Friction Reduction)

  • 최해운;신현명
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.57-63
    • /
    • 2009
  • Interface friction in blanking dies, cold forging and extrusion of aluminum alloys is a major cause of inefficient process. This paper describes an investigation of femtosecond laser texturing for reduction of interface friction on sliding surfaces in forming process. Femtosecond direct writing technology was used to fabricate a laser micro-machined die and to create microgroove patterns with varying size and density on metal forming dies. A systematic approach to find the optimum parameters and computer simulation comparison of friction coefficients are provided to study the relation of friction coefficients and die profiles. In metal forming tests, the effectiveness of various laser-machined patterns for enhancing interface lubrication is determined.

레이저 용접 합체박판의 성형한계도와 스탬핑 금형 성형해석에 적용 (Forming Limit Diagram of Laser Welded Blank and Its Application to Forming Analysis of Stamping Dies)

  • 금영탁;구본영;박승우;유석종;이경남
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.3-9
    • /
    • 2000
  • The new FLD of the laser welded blank, which includes FLCs of welded zone and base metals, is introduced. For the forming limits of welded zone, the hemispherical dome punch tests were performed with various widths of asymmetric specimen. The FLC0 as well as the dome height at fracture associated with various specimen widths in the same and different thickness combinations were found to see the formability depending on thickness combinations. In order to show the application of the new FLD, the measured strains of squared cup drawing and simulated strains of door inner panel stamping were compared with those of FLCs. The successful prediction of fracture in the applications reveals that the forming limits of welded zone and base metals should be separately found for more accurate evaluation of the formability and workability of the laser welded blank.

  • PDF