• Title/Summary/Keyword: Laser extinction method

Search Result 48, Processing Time 0.025 seconds

The Research on SMSR Yield Improvement of the Optical Transceiver Using Modulated DFB Laser (변조된 DFB 레이저를 이용한 광 송수신기의 SMSR 수율 향상에 관한 연구)

  • Kwon, Yoon-Koo;Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2285-2290
    • /
    • 2011
  • This paper is the research on SMSR yield improvement of the optical transceiver using modulated DFB laser. In general, the wavelength of DFB laser optical transceiver are 1310, 1490 and 1550 nm. Usually SMSR in modulated DFB is difficult to improve as low as 30 dB because of high slop efficiency trade off. In modulation condition, we studied SMSR improvement according to adjust bias current, extinction ratio and optical line terminal receiver sensitivity. As our test results, we can found a method how to improve SMSR for optical transceiver for long distance.

A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures (고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구)

  • 배명환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF

Spray Visualization Using Laser Diagnostics (레이저 계측법을 이용한 분무 가시화)

  • Yoon Youngbin;Koh Hyeonseok;Kim Dongjun;Khil Taeock
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.3-13
    • /
    • 2005
  • The optical patterantor provides the high resolution and quantitative information of the spray. Fuel distribution and Sauter Mean Diameter (SMD) can be measured from fluorescence and Mie-scat-tering images. To correct the attenuation of the laser beam and signal in dense spray region, the method to find the geometric mean of the signal intensities obtained from two cameras was evaluated and verified in a solid-cone spray. In high pressure environment, the increased number density of the droplets cause multiple scattering. The optical patternation technique using a laser beam instead of a laser sheet was applied to minimize the multiple scattering problem. The pattern of a coaxial spray was changed from hollow-cone to solid-cone shape, and the spray angle was reduced as the ambient pressure increased from 0.1 to 4.0 MPa.

  • PDF

Retrieval of Lidar Overlap Factor using Raman Lidar System (라만 라이다 시스템을 이용한 라이다 중첩함수 산출)

  • Noh, Young-M.;Muller, Detlef;Shin, Dong-Ho;Lee, Kyung-Hwa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.450-458
    • /
    • 2009
  • The range-dependent overlap factor of a lidar system can be determined experimentally if a Raman backscatter signal by molecule is measured in addition to the usually observed elastic backscatter signal, which consists of a molecular component and a particle component. The direct determination of the overlap profile is presented and applied to a lidar measurement according to variation of telescope field-of-view and distance between telescope and transmitting laser. The retrieval of extinction coefficient by Raman method can generate high errors for heights below planetary boundary layer if the overlap effect is ignored. The overlap correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

Evaluation of Plasma Characteristics for Hg-Ar Using LIF (LIF를 이용한 Hg-Ar 플라즈마 특성 평가)

  • Moon, Jong-Dae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.79-83
    • /
    • 2008
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. Due to this generation, the extinction of atoms in a metastable state occurred through collision, ionization, and excitation between plasma particles. The density and distribution of the metastable state depended on the energy and density of plasma particles, intensely. This highlights the importance of measuring density distribution in plasma electric discharge mechanism study. The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength. change, and also confirmed that the largest fluorescent signal in 436nm, and that the density of atoms in 546.2nm ($6^3S_1{\to}6^3P_2$) were larger than 404.8nm ($6^3S_1{\to}6^3P_2$). According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

OH Radical Distribution and Sooting Characteristics in Co-Flow Diffusion Flames (동축류 확산화염의 OH 라다칼 분포 및 매연 특성)

  • Lee, Won-Nam;Song, Young-Hoon;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.1-11
    • /
    • 1997
  • The soot and OH radical distributions have been experimentally studied in ethylene and propane laminar diffusion flames. The integrated soot volume fraction was measured along the centerline of a flame using a laser light extinction method. Planar laser light scattering and PLIF techniques are employed for the soot and OH radical distribution measurements utilizing Nd:YAG laser and OPO, FDO system. The concentration of OH radical is rapidly decreased at the edge of sooting region, which implies the importance of OH radical species on the soot oxidation process. For ethylene flames, the addition of air in fuel moves the OH radical distribution towards the center line of a flame at the soot oxidation region, while the concentration of OH radical remains relatively high at the soot formation region. The interaction between soot particles and OH radicals becomes more active with fuel-air at the soot oxidation region. For propane flames, however, any indication of the increased interaction between soot particles and OH radicals with fuel-air was not noticed.

  • PDF

SOOT YIELD OF TURBULENT PREMIXED PROPANE-OXYGEN-INERT GAS FLAMES IN A CONSTANT-VOLUME COMBUSTOR AT HIGH PRESSURES

  • Bae, M.W.;Bae, C.W.;Lee, S.K.;Ahn, S.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degrees intervals in order to observe the soot formation under high temperature and high pressure. The eight converged flames compress the end gases to a high pressure. The laser schlieren and direct flame photographs with observation area of 10 mm in diameter are taken to examine the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The changes of pressure and temperature during soot formation are controlled by varying the initial charging pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping the temperature and raising the pressure at a constant equivalence ratio, and the soot yield in turbulent combustion decreases as compared with that in laminar combustion because the burnt gas temperature increases with the drop of heat loss for laminar combustion.

A Study on the Soot Particle Measurement in Co-Flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple (레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyng;Lee, Won-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.863-870
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame has been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distribution in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by particles. A laser extinction method was used to measure the soot volume fraction and laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

A Study on the Soot Particle Measurement in Co-flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple (레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyung;Lee, Won-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1267-1273
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame have been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles were detected were detected by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by absorbing particles. A laser extinction method was used to measure the soot volume fraction and Laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

  • PDF

A Study on the Development of a Low-cost Device for Measuring the Optical Smoke Density (광학적 연기밀도 측정을 위한 저가형 장치의 개발에 관한 연구)

  • Kim, Bong-Jun;Cho, Jae-Ho;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • A low-cost device using the light-extinction method was developed to measure the optical smoke density in various fire experiments in the present study. The relative measurement accuracy of low-cost device was evaluated through the comparison of optical density measured by a high-cost standard device consisting of He-Ne laser, photo detector and various optical components. The low-cost device was composed of laser module, photocell and acrylic board. From the experiments using a smoke generator can be easily adjusted the smoke concentration, it was found that the low-cost device could measure the smoke density within the range of ${\pm}10%$, compared to the standard device. In addition, the reliability of low-cost device was also confirmed in the experiment using a polyethylene flame. Finally, it is expected that the low-cost device developed with real-time measurement and simple installation for measuring the smoke density will be used instead of the high-cost standard device.