• Title/Summary/Keyword: Laser displacement sensor

Search Result 171, Processing Time 0.02 seconds

Optimizing Laser Scanner Selection and Installation through 3D Simulation-Based Planning - Focusing on Displacement Measurements of Retaining Wall Structures in Small-scale Buildings -

  • Lee, Gil-yong;Kim, Jun-Sang;Yoou, Geon hee;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.68-82
    • /
    • 2024
  • The planning stage of laser scanning is crucial for acquiring high-quality 3D source data. It involves assessing the target space's environment and formulating an effective measurement strategy. However, existing practices often overlook on-site conditions, with decisions on scanner deployment and scanning locations relying heavily on the operators' experience. This approach has resulted in frequent modifications to scanning locations and diminished 3D data quality. Previous research has explored the selection of optimal scanner locations and conducted preliminary reviews through simulation, but these methods have significant drawbacks. They fail to consider scanner inaccuracies, do not support the use of multiple scanners, rely on less accurate 2D drawings, and require specialized knowledge in 3D modeling and programming. This study introduces an optimization technique for laser scanning planning using 3D simulation to address these issues. By evaluating the accuracy of scan data from various laser scanners and their positioning for scanning a retaining wall structure in a small-scale building, this method aids in refining the laser scanning plan. It enhances the decision-making process for end-users by ensuring data quality and reducing the need for plan adjustments during the planning phase.

Development of Small Loading and Positioning Device using VCM (보이스 코일 모터를 이용한 미세 하중 및 위치 결정 기구의 개발)

  • 권기환;오승환;조남규;윤준용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.64-72
    • /
    • 2003
  • This paper presents a small loading and positioning device using VCM (voice coil motor). The developed device consists of a VCM-based linear actuating system, a capacitance displacement sensor and a cantilever deflection sensing system. The trust force of the VCM proportional to applied current moves the column supported on two pairs of parallel leaf springs. The infinitesimal displacement of moved column is detected by capacitance displacement sensor with a resolution of 0.1nm and a repeatability of 1nm. Also, a micro cantilever with known stiffness (200N/m), which is mounted on the end of the column, is used as a force sensor to detect the load applied to a specimen. After the cantilever contacts with the specimen, the deflection of cantilever and the load applied to the specimen are measured by using an optical lever system which consists of a diode laser, a mirror and a PSD (position sensitive detector). In this paper, an experimental system was constructed and its actuator and sensing parts were tested and calibrated. Also, the constructed system was applied to the indentation experiment and the load-displacement curve of aluminum was obtained. Experimental results showed that the developed device can be applied for performing nano indentation.

Design and calibration of a wireless laser-based optical sensor for crack propagation monitoring

  • Man, S.H.;Chang, C.C.;Hassan, M.;Bermak, A.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1543-1567
    • /
    • 2015
  • In this study, a wireless crack sensor is developed for monitoring cracks propagating in two dimensions. This sensor is developed by incorporating a laser-based optical navigation sensor board (ADNS-9500) into a smart wireless platform (Imote2). To measure crack propagation, the Imote2 sends a signal to the ADNS-9500 to collect a sequence of images reflected from the concrete surface. These acquired images can be processed in the ADNS-9500 directly (the navigation mode) or sent to Imote2 for processing (the frame capture mode). The computed crack displacement can then be transmitted wirelessly to a base station. The design and the construction of this sensor are reported herein followed by some calibration tests on one prototype sensor. Test results show that the sensor can provide sub-millimeter accuracy under sinusoidal and step movement. Also, the two modes of operation offer complementary performance as the navigation mode is more accurate in tracking large amplitude and fast crack movement while the frame capture mode is more accurate for small and slow crack movement. These results illustrate the feasibility of developing such a crack sensor as well as point out directions of further research before its actual implementation.

The design of 4S-Van for implementation of ground-laser mapping system (지상 레이져 매핑시스템 구현을 위한 4S-Van 시스템 설계)

  • 김성백;이승용;김민수
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.407-419
    • /
    • 2002
  • In this study, the design of 4S-Van system is discussed fur the implementation of laser mapping system. Laser device is fast and accurate sensor that acquires 3D road and surface data. The orientation laser sensor is determined by loosely coupled (D)GPS/INS Integration. Considering current system architecture, (D)GPS/INS integration is performed far performance analysis of direct georeferencing and self-calibration is performed for interior and exterior orientation and displacement. We utilized 3 laser sensors for compensation and performance improvement. 3D surface data from laser scanner and texture image from CCD camera can be used to implement 3D visualization.

  • PDF

Measurement of Dynamic Deformation for Structure Using Linear Scan Sensor (Linear Scan Sensor를 활용한 구조물 동적 변위 측정)

  • 김감래;김명배;곽강율;김주용
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.39-42
    • /
    • 2003
  • In order to Impose an effective check on the existing methode of measurement, this study make an attempt to attach sensor on a structure, which can perceive a laser beam sent out from a light source at any place. This system makes it possible to measure an absolute of dynamic displacement according to accurately survey an amount of fluctuation in process of time. This result of experiment to compare the products by means of each method was satisfactory for identification. Accordingly these facts attest to the possibility of accurate measurement owing to gauge an dynamic displacement amount of structure.

  • PDF

Development of a grinding robot system for the oil groove of the engine cylinder liner (실린더 라이너 오일그루브 가공 로봇 시스템 개발)

  • Noh, Tae-Yang;Lee, Yun-Sik;Jung, Chang-Wook;Lee, Ji-Hyung;Oh, Yong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1075-1080
    • /
    • 2008
  • An engine for marine propulsion and power generation consists of several cylinder liner-piston sets. And the oil groove is on the cylinder liner inside wall for the lubrication between a piston and cylinder. The machining process of oil groove has been carried by manual work so far, because of the diversity of the shape. Recently, we developed an automatic grinding robot system for oil groove machining of engine cylinder liners. It can covers various types of oil grooves and adjust its position by itself. The grinding robot system consists of a robot, a machining tool head, sensors and a control system. The robot automatically recognizes the cylinder liner's inside configuration by using a laser displacement sensor and a vision sensor after the cylinder liner is placed on a set-up equipment.

  • PDF

Trends of Sensor-based Intelligent Arc Welding Robot System (센서기반 지능형 아크 용접 로봇 시스템의 동향)

  • Joung, Ji Hoon;Shin, Hyeon-Ho;Song, Young Hoon;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1051-1056
    • /
    • 2014
  • In this paper, we introduce an intelligent robotic arc welding system which exploits sensors like as LVS (Laser Vision Sensor), Hall effect sensor, voltmeter and so on. The use of industrial robot is saturated because of its own limitation, and one of the major limitations is that industrial robot cannot recognize the environment. Lately, sensor-based environmental awareness research of the industrial robot is performed actively to overcome such limitation, and it can expand application field and improve productivity. We classify the sensor-based intelligent arc welding robot system by the goal and the sensing data. The goals can be categorized into detection of a welding start point, tracking of a welding line and correction of a torch deformation. The Sensing data can be categorized into welding data (i.e. current, voltage and short circuit detection) and displacement data (i.e. distance, position). This paper covers not only the explanation of the each category but also its advantage and limitation.

Precision Displacement Measurement of Three-DOF Micro Motions Using Position Sensitive Detector and Spherical Reflector (PSD와 구면반사를 이용한 3자유도 미소 변위의 정밀측정)

  • 이재욱;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.99-104
    • /
    • 2003
  • A precision displacement measurement system of 3-DOF micro motions is proposed in this paper. The measurement system is composed of two diode lasers, two quadratic PSDs, two beam splitters and a sphere whose surface is highly reflective. In this measurement system, the sphere reflector is mounted on the platform of positioning devices whose 3-DOF translational motions are to be measured, and the sensitive areas of two PSDs are oriented toward the center point of the sphere reflector. Each laser beam emitted from two diode laser sources is reflected at the surface of sphere and arrives at two PSDs. Each PSD serves as a 2-dimensional sensor, providing the information on the 3-dimensional position of the sphere. In this paper, we model the relationship between the outputs of two PSDs and 3-DOF translational motions of the sphere mounted on the object. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, and measurement error. The simulation results show that the proposed measurement system can be valid means of precision displacement measurement of 3-dimensional micro motions.

Tip Position Control of a Flexible Cantilever Based on Kalman Estimation Using an Accelerometer (가속도계를 이용한 칼만 추정 기반의 유연 외팔보의 종단 제어)

  • Kim, Gook-Hwan;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.591-598
    • /
    • 2011
  • Tip position control of a flexible cantilever is difficult due to the non-minimum phase dynamics that result from the finite propagating speed of a mechanical wave along the cantilever. In this paper, we propose a method for the tip position control using a light and cheap accelerometer that does not bring any significant change to the dynamics of the cantilever system. The linear system identification model of the flexible cantilever is obtained with measurements by a laser displacement sensor. A Kalman estimator is designed with this model and calculates the estimated tip position with the acceleration data of the accelerometer that is attached on the tip of the cantilever. To verify reliability of the estimator, the estimated tip position is used to the feedback control system that uses a fuzzy logic controller. The control results are compared with those of the fuzzy control system where the real tip position is measured by a laser displacement sensor. Also, the performance of the estimator with the accelerometer is presented and discussed.

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.