• Title/Summary/Keyword: Laser debridement

Search Result 1, Processing Time 0.028 seconds

SCANNING ELECTRON MICROSCOPIC STUDY OF IMPLANT SURFACE AFTER Er,Cr:YSGG LASER IRRADIATION (Er,Cr:YSGG 레이저를 조사한 임플란트 표면의 주사전자현미경적 연구)

  • Jo, Pil-Kwy;Min, Seung-Ki;Kwon, Kyung-Hwan;Kim, Young-Jo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.454-469
    • /
    • 2006
  • Today, there is considerable evidence to support a cause-effect relationship between microbial colonization and the pathogenesis of implant failures. The presence of bacteria on implant surfaces may result in an inflammation of the peri-implant mucosa, and, if left untreated, it may lead to a progressive destruction of alveolar bone supporting the implant, which has been named as peri-impantitis. Several maintenance regimens and treatment strategies for failing implants have been suggested. Recently, in addition to these conventional tools, the use of different laser systems has also been proposed for treatment of peri-implant infections. As lasers can perform excellent tissue ablation with high bactericidal and detoxification effects, they are expected to be one of the most promising new technical modalities for treatment of failing implants. It is introduced that Er,Cr:YSGG laser, operating at 2780nm, ablates tissue by a hydrokinetic process that prevents temperature rise. We studied the change of the titanium implant surface under scanning electron microscopy after using Er,Cr:YSGG laser at various energies, irradiation time. In this study, Er,Cr:YSGG laser irradiation of implant fixture showed different effects according to implant surface. Er,Cr:YSGG laser in TPS surface with RBM not alter the implant surface under power setting of 4 Watt(W) and irradiation time of 30sec. But in TPS surface with $Ca_3P$ coating alter above power setting of 2W and irradiation time of 10sec. TPS surface with RBM showed microfracture in 4W, 30sec and TPS surface with $Ca_3P$ coating showed destruction of fine crystalline structure, melting in excess of 2W, 10sec. We concluded that proper power setting, air, water of each implant surface must be investigated and implant surface must be irradiated under the damaged extent.