• Title/Summary/Keyword: Laser application technology

Search Result 404, Processing Time 0.026 seconds

A Micro-robotic Platform for Micro/nano Assembly: Development of a Compact Vision-based 3 DOF Absolute Position Sensor (마이크로/나노 핸들링을 위한 마이크로 로보틱 플랫폼: 비전 기반 3자유도 절대위치센서 개발)

  • Lee, Jae-Ha;Breguet, Jean Marc;Clavel, Reymond;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • A versatile micro-robotic platform for micro/nano scale assembly has been demanded in a variety of application areas such as micro-biology and nanotechnology. In the near future, a flexible and compact platform could be effectively used in a scanning electron microscope chamber. We are developing a platform that consists of miniature mobile robots and a compact positioning stage with multi degree-of-freedom. This paper presents the design and the implementation of a low-cost and compact multi degree of freedom position sensor that is capable of measuring absolute translational and rotational displacement. The proposed sensor is implemented by using a CMOS type image sensor and a target with specific hole patterns. Experimental design based on statistics was applied to finding optimal design of the target. Efficient algorithms for image processing and absolute position decoding are discussed. Simple calibration to eliminate the influence of inaccuracy of the fabricated target on the measuring performance also presented. The developed sensor was characterized by using a laser interferometer. It can be concluded that the sensor system has submicron resolution and accuracy of ${\pm}4{\mu}m$ over full travel range. The proposed vision-based sensor is cost-effective and used as a compact feedback device for implementation of a micro robotic platform.

Studies on the growth of organic single crystals of urea and THAMP (Urea와 THAMP 유기 단결정의 육성에 관한 연구)

  • 임창성;황완인;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.223-232
    • /
    • 1995
  • Abstract Urea($(NH_2)_2CO$) and THAMP (Tris(hydroxymethyl) aminomethane phosphate) are new organic nonlinear optical materials (NLO) for the device application such as the frequency conversion of laser radiation. The single crystals of urea and THAMP have been grown by the falling temperature method and the temperature difference method. The crystal growth parameters were presented associated with the molphology of the grown crystals. Based on the solubility measurements, methanol was a suitable solvent for the growth of urea. The solubilities of urea have a positive temperature coefficient and the heat of solution of urea was estimated to be -2.58 kcal/mol. The grown crystals of urea have the preferential growth habit in the z-axis. Additives such as $NH_4_H_2PO_4$, KCL, $H_3PO_4$, $CaCl_2{\cdot}2H_2O$, $C_2H_5OH$ were used for the favourable growth in the x - and y-axis and the preventive growth in the z-axis. The moleratio of THAM and H3P04 for the solution of THAMP was 1 : 1. The solubilities of THAMP have a positive temperature coefficient. The heat of solution was estimated to be - 1.70 kcal/ mol.

  • PDF

An Electrochemical Evaluation on Corrosion Properties of Welding Zone of Stainless Steel by GTAW (GTAW에 의한 스테인리스강 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.678-685
    • /
    • 2010
  • GTAW was carried out to the austenitic 304(STS 304) and 22 APU stainless steels. In this case, difference of the corrosion characteristics of welded zone with STS 304 and 22APU mentioned above was investigated with electrochemical methods. Vickers hardness of weld metal in case of STS 304 (Hv-250) showed a relatively higher value than this of 22 APU(Hv-217). The corrosion current densities of weld metal of 22APU and heat affected zone of STS 304 were observed at the highest value compared to those of other welding zone respectively. This is probably because chromium depletion field due to chromium carbide formed to weld metal of 22APU and to heat affected zone of STS 304 can preferentially easily be corroded with more active anode than other fields. Consequently it is thought that application of the other welding methods like as laser welding or using of the optimum filler metals is necessary to improve the corrosion resistance of welding parts of these steels.

Measurement of Target Objects Based on Recognition of Curvature and Plane Surfaces using a Single Slit Beam Projection (슬릿광 투영법을 이용한 곡면과 평면의 식별에 의한 대상물체의 계측)

  • Choi, Yong-Woon;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.568-576
    • /
    • 1999
  • Using a laser sheet beam projector combined with a CCD-Camera, an efficient technique to recognize complex surface of curvature and lane has been demonstrated for the purpose of mobile robot navigation. In general, obstacles of indoor environments in the field of SLIT-RAY plane are captured as segments of an elliptical arc and a line in the camera image. The robot has been capable of moving along around the obstacle in front of it, by recognizing the original shape of each segment with the differential coefficient by means of least squares method. In this technique, the imaged pixels of each segment, particularly elliptical arc, have been converted into a corresponding circular arc in the real-world coordinates so as to make more feasible the image processing for the position and radius measurement than conventional way based on direct elliptical are analyses. Advantages over direct elliptical cases include 1) higher measurement accuracy and shorter processing time because the circular arc process can reduce the shape-specifying parameters, 2) no complicated factor such as the tilt of elliptical arc axis in the image plane, which produces the capability to find column position and radiua regardless of the camera location . These are essentially required for a mobile robot application. This technique yields an accuracy less than 2cm for a 28.5cm radius column located in the range of 70-250cm distance from the robot. The accuracy obtained in this study is sufficient enough to navigate a cleaning robot which operates in indoor environments.

  • PDF

A Development of Anti-sway System for Real Application: Measurement and Control of Crane Motions Using Camera (실용화를 고려한 Anti-Sway 시스템 구축: 카메라를 이용한 크레인 운동 계측 및 제어)

  • Kawai, Hideki;Kim, Young-Bok;Choe, Yong-Woon;Yang, Joo-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.90-96
    • /
    • 2008
  • In general, the swing motions of a crane are controlled and suppressed by controlling the trolley motion. In many of our previous studies, we suggested a new type of anti-sway control system for a crane. In this proposed control system, a small auxiliary mass (moving-mass) is installed on the spreader and moving this auxiliary mass controls tire swing motion. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. However, measuring systems based on a laser sensor or other means are not veryuseful in real-worldapplications. So, in this paper, animage sensor is used to measure the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method called Vector Code Correlation (VCC), which was devised to consider real environmental conditions. The H $\infty$ based control technique is applied to suppress the swing motion of the crane. Experimental results showed that the proposed measurement and control system based on an image sensor is useful and robust to disturbances.

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

Encapsulation of Lactobacillus rhamnosus GG Using Milk Protein-Based Delivery Systems: Effects of Reaction Temperature and Holding Time on Their Physicochemical and Functional Properties

  • Ayu, Istifiani Lola;Ha, Ho-Kyung;Yang, Dong-Hun;Lee, Won-Jae;Lee, Mee-Ryung
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.894-904
    • /
    • 2021
  • Microencapsulation is a protective process for materials that are sensitive to harsh conditions encounted during food manufacture and storage. The objectives of this research were to manufacture a milk protein-based delivery system (MPDS) containing Lactobacillus rhamnosus GG (LGG) using skim milk powder and to investigate the effects of manufacturing variables, such as reaction temerpature and holding time, on the physiccohemical properties of MPDS and viability of LGG under dairy food processing and storage conditions. MPDS was prepared using chymosin at varing reaction temperatures from 25℃ to 40℃ for 10 min and holding times from 5 to 30 min at 25℃. The morphological and physicochemical properties of MPDS were evaluated using a confocal laser scanning microscope and a particle size analyzer, respectively. The number of viable cells were determined using the standard plate method. Spherical-shaped MPDS particles were successfully manufactured. The particle size of MPDS was increased with a decrease in reaction temperature and an increase in holding time. As reaction temperature and holding time were increased, the encapsulation efficiency of LGG in MPDS was increased. During pasteurization, the use of MPDS resulted in an increase in the LGG viability. The encapsulation of LGG in MPDS led to an increase in the viability of LGG in simulated gastric fluid. In addition, the LGG viability was enhanced with an increase in reaction temperature and holding time. In conclusions, the encapsulation of LGG in MPDS could be an effective way of improving the viability of LGG during pasturization process in various foods.

The Study on the Verification of the Blasting Effect of Blast Stemming Material and Plug Device (발파전색재료 및 플러그 장치의 발파효과 검증 연구)

  • Ko, Young-Hun
    • Tunnel and Underground Space
    • /
    • v.32 no.4
    • /
    • pp.272-284
    • /
    • 2022
  • This study conducted tunnel blasting to evaluate the blasting effect of a shear thickening fluid-based blasting stemming material and a sealed plug device under development. STF single stemming and STF stemming materials were combined with plugs to a tunnel blasting to which the SAV-Cut method was applied, and the advanced rate and fragmentation of tunnel blasting muck pile were compared when sand stemming was used. Tunnel advanced rate was evaluated using a 3D laser scanner. When the STF stemming material and STF stemming material with the plug were compared to the sand stemming material, it increased by 5.7 and 5.36%, respectively. As a result of evaluation of the fragmentation of tunnel blasting muck pile, it was the best when the STF stemming material was applied, and it decreased by about 61% compared to the case of sand stemming blasting. However, no significant improvement in blasting effect was observed with the application of plug devices.

Design and Fabrication of APD-FET Module for 2.5 Gbps Optical Communicating System (광통신용 APD-FET 광수신모듈 설계 및 제작)

  • 강승구;송민규;윤형진;박경현;박찬용;박형무;윤태열;이창희;심창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.166-172
    • /
    • 1994
  • The fiber optic receiver, ETRI APD-FET 1.0, is developed for the application of optical communication. This fiber optic receiver includes PD sub-module and pre-amplifier case. A single lens system is introduced for the PD sub-module. The sub-module consists of the avalenche photodiode(APD), GRIN rod lens, and a single mode fiber. The above components are enclosed into the stainless steel 304L housings. By bevelling the fiber end, the single mode fiber provides less than ~ 28 dB of optical return loss. The area of image focus is controlled by adjusting the length of spacer located in-between the fiber and the GRIN rod lens. The laser welding technique is applied to achieve the maximum coupling efficiency for the joining of each housing. In the pre-amplifier case, GaAs FET pre-amplifier workes for photocurrent amplification and the thermister is mounted to control the APD bias. The performance of ETRI APD-FET1.0 shows the sensitivity of - 30.3 dBm at $10^{-10}$ BER(bit error rate) and 2.5 Gbps optical random signal of $2^{23}-1$ word length. The fiber optic receiver is one of the essensial parts of the transmission module for B-ISDN. Also, the above optical packaging technology will be adapted for the developement of 10 Gbps transmission application 2.5 Gbps 5 Gbps

  • PDF