• Title/Summary/Keyword: Laser accuracy

Search Result 873, Processing Time 0.034 seconds

Improvement of Positioning Accuracy of Laser Navigation System using Particle Filter (파티클 필터를 이용한 레이저 내비게이션의 위치측정 성능 향상)

  • Cho, Hyun-Hak;Kim, Jung-Min;Do, Joo-Cheol;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.755-760
    • /
    • 2011
  • This paper presents a method for improving the positioning accuracy of the laser navigation. As a wireless navigation system, the laser navigation which is more flexible than a wired guidance system is used for the localization and control of an AGV(automatic guided vehicle). However, the laser navigation causes the large positioning error while the AGV turns or moves fast. To solve the problem, we propose the method for improving the positioning accuracy of the laser navigation using particle filter which has robust and reliable performance in non-linear/non-gaussian systems. For the experiment, we use the actual fork-type AGV. The AGV has a gyro, two encoders and a laser navigation. To verify the performance, the proposed method is compared with the laser navigation which is a product. In the experimental result, we verified that the proposed method could improve the positioning accuracy by approximately 66.5%.

The Evaluation of Accuracy for Airborne Laser Surveying via LiDAR System Calibration (시스템 초기화(Calibration)에 따른 항공레이저측량의 정확도 평가)

  • 이대희;위광재;김승용;김갑진;이재원
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.15-26
    • /
    • 2004
  • The calibration for systematic error in LiDAR is crucial for the accuracy of airborne laser scanning. The main error is the misalignment of platforms between INS(Inertial Navigation System) and Laser scanner For planimetrical calibration of LiDAR, the building is good feature which has great changes in height and continuous flat area in the top. The planimetry error(pitch, roll) is corrected by adjustment of height which is calculated from comparing ground control points(GCP) of building to laser scanning data. We can know scale correction of laser range by the comparison of LiDAR data and GCP is arranged at the end of scan angle where maximize the height error. The area for scale calibration have to be large flat and have almost same elevation. At 1000m for average flying height, The Accuracy of laser scanning data using LiDAR is within 110cm in height and ${\pm}$50cm in planmetry so we can use laser scanning data for generating 3D terrain surface, expecically digital surface model(DSM) which is difficult to measure by aerial photogrammetry in forest, coast, urban area of high buildings

  • PDF

Study of Efficiency Test Evaluations Method for Imaging Device Based Laser Equipment (영상장치 기반 정밀치료용 레이저 수술기의 성능 평가 방법 개발)

  • Kim, Dae Chang;Lee, Seung Bong;Jeong, Jae Hoon;Kim, Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.230-234
    • /
    • 2019
  • Medical laser equipment using optical energy is used to surgery and treat diseases by destroying and removing tissue. Domestic laser equipment has been used steadily in the skin and cosmetics sectors and has been changed to radiate high-power energy in a wide range to shorten patient treatment time. However, side effects such as burns and damage of normal tissues occurred. To solve this problem, techniques for detecting lesions using an imaging device and selectively radiating the laser have been developed. In this study, we proposed an evaluation method to evaluate the safety and performance of target detection accuracy, laser irradiation accuracy and motion protection device technology derived from product analysis and investigation. Finally, the validity of the evaluation method was evaluated by evaluating the imaging device based laser equipment as the proposed evaluation method.

Design of a Laser Welding Machine for the Precision Improvement (용접 정밀도 향상을 위한 레이저 용접기의 구조개선)

  • Ro, Seung-Hoon;Jeong, Pyeung-Soo;An, Jae-Woo;Kang, Hee-Tae;Lee, Tae-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.197-203
    • /
    • 2010
  • Laser welding is widely used for precision welding because of superior mechanical properties and high productivity. Generally the accuracy of the welding is determined by the distribution of the bead which is affected by the structural vibrations of the equipment. This study was originated to stabilize a laser welding machine to minimize the bead distribution for the precise joining. The structural properties of the laser welding machine have been investigated to analyze the major factors of the vibrations to cause the bead distribution. The ideas for the design improvement have been applied to the simulation model to identify the effects and further to achieve the stability design and to minimize the bead distribution. The result shows that a few simple design alterations can substantially suppress the structural vibrations and improve the welding accuracy. The procedure used for this study can also be applied to similar welding equipments for improving the structural stability and the welding accuracy.

  • PDF

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

Glass Drilling using Laser-induced Backside Wet Etching with Ultrasonic Vibration (초음파 진동과 레이저 후면 에칭을 통한 유리 구멍 가공)

  • Kim, Hye Mi;Park, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2014
  • Laser beam machining has been known as efficient for glass micromachining. It is usually used the ultra-short pulsed laser which is time-consuming and uneconomic process. In order to use economic and powerful long pulsed laser, indirect processing called laser-induced backside wet etching (LIBWE) is good alternative method. In this paper, micromachining of glass using Nd:YAG laser with nanosecond pulsed beam has been attempted. In order to improve shape accuracy, combined processing with magnetic stirrer has been widely used. Magnetic stirrer acts to circulate the solution and remove the bubble but it is not suitable for deep hole machining. To get better effect, ultrasonic vibration was applied for improving shape accuracy.

Development of Measurement mechanism of Laser Beam Spot size for Industrial SFF system (산업용 SFF 시스템에서 Laser Beam Spot size 측정 메커니즘 개발)

  • Bae, Sung-Woo;Kim, Dong-Soo;Choi, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1383-1388
    • /
    • 2007
  • Accuracy and processing time are very important factors when the desired shape is fabricated with Selective Laser Sintering (SLS), one of Solid Freeform Fabrication (SFF) systems. In a conventional SLS process, laser spot size is fixed during laser exposing on the sliced figure. Therefore, it is difficult to accurately and rapidly fabricate the desired shape. In this paper, to deal with those problems an SFF system having ability of changing spot size is developed. The system provides high accuracy and optimal processing time. Specifically, a variable beam expander is employed to adjust spot size for different figures on a sliced shape. Finally, Design and performance estimation of the SFF system employing a variable beam expander are achieved and the mechanism will be addressed to measure the real spot size generated from the variable beam expander.

  • PDF

Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor (포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발)

  • 맹희영;성봉현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Construction of Laser Lithography System using Method of Monitoring the Focal Point (초점 모니터 방법을 이용한 레이져 Lithography 장치의 제작과 응용)

  • 이도형
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.222-226
    • /
    • 1990
  • This paper represents the construction of laser beam writing system, laser lithography, using new method that guarantees convenience and accuracy in laser focusing. The X, Y translation stage using DC motors was controlled by the computer. Minimum line width of 1.6${\mu}{\textrm}{m}$ was obtained by the laser lithography system.

  • PDF