• Title/Summary/Keyword: Laser Transformation Hardening

Search Result 18, Processing Time 0.021 seconds

Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser (고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화)

  • Kim, Jong-Do;Kil, Byung-Lea;Kang, Woon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

Characteristics of Surface Transformation Hardening for Rod-shaped Carbon Steels by Diode Laser (다이오드 레이저를 이용한 탄소강 환봉의 표면변태 경화특성)

  • Kim, Jong-Do;Kang, Woon-Ju;Lee, Su-Jin;Yoon, Hee-Jong;Lee, Jae-Hoon
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2008
  • Laser Transformation Hardening(LTH) is one branch of the laser surface modification processes. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power density comparatively. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen, the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

  • PDF

Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (I) - Characteristics of Surface Transformation Hardening by Laser Heat Source with Gaussian Intensify distribution - (탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (I) - 가우시안 파워밀도 분포의 레이저 열원을 이용한 표면변태경화 특성 -)

  • Kim, Jong-Do;Kang, Woon-Ju
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.78-84
    • /
    • 2007
  • Laser Material Processing has been replaced the conventional machining systems - cutting, drilling, welding and surface modification and so on. Especially, LTH(Laser Transformation Hardening) process is one branch of the laser surface modification process. Conventionally, some techniques like a gas carburizing and nitriding as well as induction and torch heating have been used to harden the carbon steels. But these methods not only request post-machining resulted from a deformation but also have complex processing procedures. Besides, LTH process has some merits as : 1. It is easy to control the case depth because of output(laser power) adjustability. 2. It is able to harden the localized and complicated a.ea and minimize a deformation due to a unique property of a localized heat source. 3. An additional cooling medium is not required due to self quenching. 4. A prominent hardening results can be obtained. This study is related to the surface hardening of the rod-shaped carbon steel applied to the lathe based complex processing mechanism, a basic behavior of surface hardening, hardness distribution and structural characteristics in the hardened zone.

The characteristics of Surface Transformation Hardening for Rod-shaped SM45C Carbon Steel by CW Nd:YAG Laser (CW Nd:YAG Laser를 이용한 SM45C 환봉의 표면 열처리 특성)

  • Kim Jong-Do;Gang Un-Ju;Lee Chang-Je;Lee Je-Hun;Seo Jeong;Lee Mun-Yong
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.248-250
    • /
    • 2006
  • The study on a surface transformation hardening of a rod-shaped SM45C carbon steel is carried out by using CW Nd:YAG laser. Conventionally, $CO_2$ laser has been usually used as a laser source for a transformation hardening. however, it is needed to an additional absorbent coating like a colloidal graphite owing to a lower absorbtion rate. On the other hand, no cost and post-removal process of coating is required to Nd:YAG laser, due to a higher absorbtion rate relatively. Moreover, there is a merit which is capable of building up the more flexible processing system resulted from a beam delivery through a optical fiber. In this study, we were going to recognize characteristics of a transformation hardening using a optic head with a gaussian beam distribution.

  • PDF

Transformation Hardening of High Power Laser (고출력 레이저에 의한 표면 경화)

  • Kim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 1995
  • Heat flow equation and FEM have been used to calculate the hardening section of material in laser transformation hardening. SCM440 used as the diesel engine piston of vessel has been hardened by a $CO_2$ laser with the wavelength of $10.6{\mu}m$. The specimens were inclined from 0 to 70 degree to investigate the characteristics of laser hardening. The geometrical factor of heat flow equation affects the size of hardening area. The case width decreased with increasing travel speed and the case width increased with increasing inclined angle. Maximum case depth was achieved about 1.0mm and maximum hardness of laser hardened area was of 2.8 times than that of base metal. Experimental data show good agreement with the theoretical calculations for given laser hardening conditions.

  • PDF

Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (II) - Comparison of Characteristics on Laser Surface Transformation Hardening as a Difference on Beam Profile - (탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (II) - 빔 프로파일 차이에 따른 레이저 표면변태경화 특성 비교 -)

  • Kim, Jong-Do;Kang, Woon-Ju
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • The conventional study on the laser surface transformation hardening has been carried out with a beam of the specified shape and uniform power-intensity distribution in order to ensure the uniformity of the hardening depth. Two types of beams - the circular gaussian beam and rectangular beam of the uniform power-intensity distribution were used in this study. we were supposed to optimize the process parameters and to compare the hardening results with two optics respectively. As a result, the hardness distribution of the hardened zone was similar in both cases and the hardened phase by the rectangular beam was denser than that by the circular gaussian beam.

A study on monitoring and control in laser transformation hardening process (레이저 표면 경화 공정의 계측 및 제어에 관한 연구)

  • 우현구;조형석;한유희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.883-888
    • /
    • 1993
  • This paper proposes a monitoring method using an infrared temperature sensor in laser surface hardening process. To investigate the validity of the method a series of experiments are performed for various conditions. The experimental results show that the surface temperature depends upon the laser power, travelling speed and surface conditions of a specimen. Especially, the laser surface hardening process is greatly influenced by the surface conditions of the specimen, such as coating thickness and materials.

  • PDF

Pridiction of Case Depth in Laser Beam Hardening (레이저 표면경화에서 경화깊이 예측)

  • Kim, Jae-Do;Cho, Chong-du;Seo, Jung-Won;Cho, Yong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.87-95
    • /
    • 1995
  • In order to predict the case depth and case width in laser transformation hardening, a finite element method was used to analyze the temperature distribution on the material. Laser hardening of the specimens of SM45C and STE11steels was experimented by using the continuous wave CO$_{2}$ laser with the various travel speeds and the defocused Gaussian beam mode. Phosphate coating was adopted on the surface of SM45C to increase the absorption of 10.6 .mu. m laser energy. Experimental data show good agreement with the theoretical predictions. The maximum possible case depth can be predicted for the given laser hardening conditions, such as laser power, and travel speed.

  • PDF

A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening (레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구)

  • Kim, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF

Laser Hardening of Piston Ring Groove (피스톤 링그루브의 레이저 열처리)

  • Song, Y.K.;Suh, S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.165-171
    • /
    • 1997
  • Laser hardening for the piston ring groove of ductile cast iron was tried. Mechanical and microstructural investigation for the hardened area indicated that the laser heating technique could replace conventional induction hardening process completely and further showed that post grinding process would be eliminated by minimizing bulging of heat treated area. In laser hardening, the volume increase caused by martensitic phase transformation proved to be less than $10{\mu}m$, which insures no post machining on the hardened surface. As expected, the depth of hardening was inversely proportional to the beam scanning velocity and the highest surface hardness was obtained at the beam velocity of 0.75m/min. Heat treatment using phosphate coating demonstrated quite comparable result to the case of graphite suscepter.

  • PDF