• 제목/요약/키워드: Laser Tomography

검색결과 131건 처리시간 0.021초

Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

  • Tasanapanont, Jintana;Apisariyakul, Janya;Wattanachai, Tanapan;Sriwilas, Patiyut;Midtbo, Marit;Jotikasthira, Dhirawat
    • Imaging Science in Dentistry
    • /
    • 제47권2호
    • /
    • pp.117-122
    • /
    • 2017
  • Purpose: The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Materials and Methods: Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient(ICC) was used to assess intraobserver reliability. Results: The root surface area measurements ($230.11{\pm}41.97mm^2$) obtained using CBCT were slightly greater than those ($229.31{\pm}42.46mm^2$) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. Conclusion: This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images

  • Kim, Jooseong;Lagravere, Manuel O.
    • 대한치과교정학회지
    • /
    • 제46권1호
    • /
    • pp.13-19
    • /
    • 2016
  • Objective: The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. Methods: CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Results: Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were $0.41{\pm}0.305%$ and $0.45{\pm}0.456%$, respectively; for anterior Bolton ratios, $0.59{\pm}0.520%$ and $1.01{\pm}0.780%$, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Conclusions: Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis.

Accuracy and reliability of measurements performed using two different software programs on digital models generated using laser and computed tomography plaster model scanners

  • Camardella, Leonardo T.;Ongkosuwito, Edwin M.;Penning, E. Willemijn;Kuijpers-Jagtman, Anne Marie;Vilella, Oswaldo V.;Breuning, K. Hero
    • 대한치과교정학회지
    • /
    • 제50권1호
    • /
    • pp.13-25
    • /
    • 2020
  • Objective: The aim of this study was to compare the accuracy and reliability of measurements performed using two different software programs on digital models generated using two types of plaster model scanners (a laser scanner and a computed tomography [CT] scanner). Methods: Thirty plaster models were scanned with a 3Shape laser scanner and with a Flash CT scanner. Two examiners performed measurements on plaster models by using digital calipers and on digital models by using Ortho Analyzer (3Shape) and Digimodel® (OrthoProof) software programs. Forty-two measurements, including tooth diameter, crown height, overjet, overbite, intercanine and intermolar distances, and sagittal relationship, were obtained. Results: Statistically significant differences were not found between the plaster and digital model measurements (ANOVA); however, some discrepancies were clinically relevant. Plaster and digital model measurements made using the two scanning methods showed high intraclass coefficient correlation values and acceptable 95% limits of agreement in the Bland-Altman analysis. The software used did not influence the accuracy of measurements. Conclusions: Digital models generated from plaster casts by using laser and CT scanning and measured using two different software programs are accurate, and the measurements are reliable. Therefore, both fabrication methods and software could be used interchangeably.

Effect of Nd:YAG laser irradiation on adherence of retrograde filling materials: evaluation by micro-computed tomography

  • 김민영;김현철;곽상원;윤태철;김의성
    • 대한치과의사협회지
    • /
    • 제54권11호
    • /
    • pp.865-873
    • /
    • 2016
  • Background/Purpose: The purpose of this study was to evaluate the effect of Nd:YAG irradiation on adherence of retrograde filling materials (mineral trioxide aggregate [MTA] and Super-EBA) by micro-computed tomography (CT) measurement and to observe the dentinal surface after irradiation by scanning electron microscopy (SEM). Materials and methods: Forty retrofilling models using extracted human teeth were divided into four groups according to the material and method used: ProRoot MTA (MTA group), Super-EBA (EBA group), MTA with Nd:YAG laser irradiation (LMTA group), and Super-EBA with Nd:YAG laser irradiation (LEBA group). All specimens were stored in 100% humidity for 24 hours until micro-CT was performed. The gap volume of the tooth/material interface was measured using the CTAn program. In six samples, the laser-irradiated dentin surface was observed using SEM. Results: The mean percent difference in gap volume was not statistically significant between the Nd:YAG laser-irradiated groups and non-irradiated in both materials(P > 0.05). The gap volume in the MTA group was significantly lower than that in the EBA group (P < 0.05). Examination of the non-irradiated specimens by SEM showed patent dentinal tubules. In contrast, alterations in the texture of the dentin surface and obliteration of the dentinal tubules were evident in the Nd:YAG laser-irradiated specimens. Conclusion: In this study, changes in the dentinal surface after Nd:YAG irradiation did not affect adherence between the apical filling material and the dentin wall.

  • PDF

Assessment of the accuracy of laser-scanned models and 3-dimensional rendered cone-beam computed tomographic images compared to digital caliper measurements on plaster casts

  • Yousefi, Faezeh;Shokri, Abbas;Zahedi, Foozie;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • 제51권4호
    • /
    • pp.429-438
    • /
    • 2021
  • Purpose: This study investigated the accuracy of laser-scanned models and 3-dimensional(3D) rendered cone-beam computed tomography (CBCT) compared to the gold standard (plaster casts) for linear measurements on dental arches. Materials and Methods: CBCT scans and plaster models from 30 patients were retrieved. Plaster models were scanned by an Emerald laser scanner (Planmeca, Helsinki, Finland). Sixteen different measurements, encompassing the mesiodistal width of teeth and both arches' length and width, were calculated using various landmarks. Linear measurements were made on laser-scanned models using Autodesk Meshmixer software v. 3.0 (Autodesk, Mill Valley, CA, USA), on 3D-rendered CBCT models using OnDemand 3D v. 1.0 (Cybermed, Seoul, Korea) and on plaster casts by a digital caliper. Descriptive statistics, the paired t-test, and intra- and inter-class correlation coefficients were used to analyze the data. Results: There were statistically significant differences between some measurements on plaster casts and laser-scanned or 3D-rendered CBCT models (P<0.05). Molar mesiodistal width and mandibular anterior arch width deviated significantly different from the gold standard in both methods. The largest mean differences of laser-scanned and 3D-rendered CBCT models compared to the gold standard were 0.12±0.23 mm and 0.42±0.53 mm, respectively. Most of the mean differences were not clinically significant. The intra- and inter-class correlation results were acceptable for all measurements(>0.830) and between observers(>0.801). Conclusion: The 3D-rendered CBCT images and laser-scanned models were useful and accurate alternatives to conventional plaster models. They could be used for clinical purposes in orthodontics and prostheses.

3차원 디지털 스펙클 토모그래피를 이용한 비정상 비대칭 유동의 밀도 분포 재건 (Reconstruction of Density Distribution for Unsteady and Asymmetric Flow Using Three-dimensional Digital Speckle Tomography)

  • 김용재;고한서;백승환
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2006
  • Transient and asymmetric density distributions have been investigated by a digital speckle tomography with a novel integration method. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and unsteady. The speckle movements which have been formed by a ground glass between no flow and downward butane flow from an elliptical nozzle have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. A novel integration method has been developed to obtain projection data from the deflection angles for the speckle tomography. The unsteady density fields have been reconstructed from the accurate projection values by the digital speckle tomography method using the developed integration method.

  • PDF

광통신용 및 의용 계측을 위한 FSF Laser의 개발 (FSF laser Development for the optical communication diagnosis and medical tomography application)

  • 지명훈;이영우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.514-517
    • /
    • 2002
  • 광 공진기내에 음향광학소자(AOM)를 사용하여 FSF(Frequency-shifted feedback) 레이저를 개발하였다. 공진기는 1차 회절광에 의한 feedback loop로 구성된다. FSF 레이저 출력은 수백 PHz/s의 초고속 주파수 chirp을 갖는“chirped frequency comb”이라 불리는 주파수 출력을 보여준다. FSF 레이저를 광원으로 광거리 계측에서는 chirped 주파수 comb을 이용하여 거리를 알 수 있다.

  • PDF