• Title/Summary/Keyword: Laser Surface Treatment

Search Result 320, Processing Time 0.023 seconds

Study on the Surface Temperature and Laser Heat Conduction by the Computer Algorithm (컴퓨터 알고리즘에 의한 표면온도와 레이저 열전도에 관한 연구)

  • Lee, Young-Wook
    • The Journal of Information Technology
    • /
    • v.9 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • This study deals with the computing the temperature change of surface to the increment of time and diffusivity, the heat flux during irradiation of laser. In addition, the computer algorithm for computing the penetration change of the corresponding surface irradiated is developed. The result of this study shows the possibility to treatment of cancer, abnormal cell and biological tissue during irradiation of laser.

  • PDF

Comparison of the effect of hand instruments, an ultrasonic scaler, and an erbium-doped yttrium aluminium garnet laser on root surface roughness of teeth with periodontitis: a profilometer study

  • Amid, Reza;Kadkhodazadeh, Mahdi;Fekrazad, Reza;Hajizadeh, Farzin;Ghafoori, Arash
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.101-105
    • /
    • 2013
  • Purpose: The present study aimed to measure root surface roughness in teeth with periodontitis by a profilometer following root planning with ultrasonic and hand instruments with and without erbium-doped yttrium aluminium garnet (Er:YAG) laser irradiation. Methods: Sixty single-rooted maxillary and mandibular teeth, extracted because of periodontal disease, were collected. The crowns and apices of the roots were cut off using a diamond bur and water coolant. The specimens were mounted in an acrylic resin block such that a plain root surface was accessible. After primary evaluation and setting a baseline, the samples were divided into 4 groups. In group 1, the samples were root planned using a manual curette. The group 2 samples were prepared with an ultrasonic scaler. In group 3, after scaling with hand instrumentation, the roots were treated with a Smart 1240D plus Er:YAG laser and in group 4, the roots were prepared with ultrasonic scaler and subsequently treated with an Er:YAG laser. Root surface roughness was then measured by a profilometer (MahrSurf M300+RD18C system) under controlled laboratory conditions at a temperature of $25^{\circ}C$ and 41% humidity. The data were analyzed statistically using analysis of variance and a t-test (P<0.05). Results: Significant differences were detected in terms of surface roughness and surface distortion before and after treatment. The average reduction of the surface roughness after treatment in groups 1, 2, 3, and 4 was 1.89, 1.88, 1.40, and 1.52, respectively. These findings revealed no significant differences among the four groups. Conclusions: An Er:YAG laser as an adjunct to traditional scaling and root planning reduces root surface roughness. However, the surface ultrastructure is more irregular than when using conventional methods.

Laser Treatment in Restorative Dentistry

  • Shintani, Hideaki
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.556-556
    • /
    • 2001
  • The application of the laser to the tooth hard tissue started from the removal of carious dentin with the laser performed by Goldman in 1964. With the development of the laser technology, the laser treatment with less descomfort such as pain, vibration, and noise, etc. has been attempted. Since it is difficult to give a suitable form for inlay restoration to a cavity prepared with laser, it has to be restored with adhesive resinous materials. However, various evaluation of adhesive properties of the resinous materials to lased tooth surface on the various conditions such as adgerent, irradiation condition, procedure of bond test, and adhesive materials used, etc. have been reported.(omitted)

  • PDF

Combined Heat Treatment Characteristics of Cast Iron for Mold Materials (금형재료용 주철강의 복합열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.364-370
    • /
    • 2011
  • Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.

Laser decontamination for radioactive contaminated metal surface: A review

  • Qian Wang;Feisen Wang;Chuang Cai;Hui Chen;Fei Ji;Chen Yong;Dasong Liao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.12-24
    • /
    • 2023
  • With the improvement of laser technology, the strategic needs of efficient and precise decontamination of various components in nuclear application units can be fulfilled by laser decontamination. The surface contaminants of nuclear facilities mainly exist both as loose contaminated layer and fixed oxide layer. The types of radionuclides and contamination layer thickness are closely related to the operation status of nuclear facilities, which have an important influence on the laser decontamination process. This study reviewed the mechanism of laser surface treatment and the influence of laser process parameters on the decontamination thickness, decontamination factor, decontamination efficiency and the distribution of aerosol particle. Although multiple studies have been performed on the mechanism of laser processing and laser decontamination process, there are few studies on the microscopic process mechanism of laser decontamination and the influence of laser decontamination on surface properties. In particular, the interaction between laser and radioactive contaminants needs more research in the future.

Improving the Formability of an SUS316 Plate using Laser-induced Surface Heat Treatment and Cladding Processes (레이저 기반 표면 열처리 및 클래딩을 이용한 SUS 316 판재 성형성 향상)

  • Jo, Yeong-Kwan;Yu, Jae-Hyun;Jeong, Ho-Seung;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.30-37
    • /
    • 2020
  • We propose a practical method for increasing formability of a sheet metal plate using laser heat treatment (LHT) and cladding process. In this work, two kinds of process such as laser-induced heat treatment and cladding were utilized to evaluate the effect on formability of SUS316 sheets with different thickness of 1 and 3 mm. By using a vertically line-patterned tensile specimen that was LHTed or cladded on its surface, the process parameters of each surface treating method were studied and optimized. Through the basic test, we knew that the laser power of 900 W and scanning speed of 500 mm/min was the best condition for increase of formability. As the treatment results, ultimate tensile strength and elongation were increased as approximately 2.1 and 7.0%, respectively. To verify the usefulness of this work in industrial cases, we conducted a bulging test using with and without LHTed SUS316 sheet metal blanks. The results show that the bulging height of LHTed sheet was increased by 73% compared to that of the original one.

Characteristics on Surface Hardening by using of Continuous Wave Nd:YAG Laser of Cold-Work Die Steel(STD11) about Variation of Focal Lens F-number (초점렌즈 F-수 변화에 의한 냉간금형강 STD11 의 연속파 Nd:YAG 레이저 표면경화 특성)

  • Hwang, Chan-Youn;Yang, Yun-Seok;Lee, Ka-Ram;Yoo, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.395-408
    • /
    • 2012
  • An experimental investigation with 2.8kW Nd:YAG laser system was carried out to study the effects of different laser process parameters on the microstructure and hardness of STD11. The optical lens with the elliptical profile are designed to obtain a wide surface hardening area with uniform hardness. The Laser beam is allowed to scan on the surface of the work piece varying the power (1600, 1800 and 1900kW) and traverse speed (200, 400, 600, 800 and 1000mm/min) at three different F-numbers of lens. After laser surface treatment three zones, In the microstructure have been observed : melted zone(decarburization), heat affected zone(martensite), and the substrate.

Removal of Laser Damage in Electrode Formed by Plating in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에서 도금을 이용한 전극 형성 시 발생되는 레이저 손상 제거)

  • Jeong, Myeong Sang;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.370-375
    • /
    • 2016
  • In this paper, we investigated the electrical properties of crystalline silicon solar cell fabricated with Ni/Cu/Ag plating. The laser process was used to ablate silicon nitride layer as well as to form the selective emitter. Phosphoric acid layer was spin-coated to prevent damage caused by laser and formed selective emitter during laser process. As a result, the contact resistance was decreased by lower sheet resistance in electrode region. Low sheet resistance was obtained by increasing laser current, but efficiency and open circuit voltage were decreased by damage on the wafer surface. KOH treatment was used to remove the laser damage on the silicon surface prior to metalization of the front electrode by Ni/Cu/Ag plating. Ni and Cu were plated for each 4 minutes and 16 minutes and very thin layer of Ag with $1{\mu}m$ thickness was plated onto Ni/Cu electrode for 30 seconds to prevent oxidation of the electrode. The silicon solar cells with KOH treatment showed the 0.2% improved efficiency compared to those without treatment.

Processing Method for the Laser Surface Treatment of Dental Implants (치과용 임플란트의 레이저 표면처리 공정기술 개발)

  • Yoo, Young-Tae;Choi, Byeong-Jae;Kim, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.100-106
    • /
    • 2021
  • Typical implants are not specified the screw structure and the surface process according to the bone quality of the human body. The purpose of this study is to complement the shortcomings of the existing implant surface processing method. It is to propose a surface processing method that increases the adhesion between the implant and bone tissue by increasing the surface area per unit area of the implant. It is very important to establish precise and systematic process parameters when surface treatment of implants using lasers. Therefore, we intend to develop a process so that the implant can be a biocompatible structure using a Q-switching Nd:YAG laser with a wavelength of 1.06um. Implant surface treatment technology through this study will be used in the industry.

Effect of Laser Processing Patterns on the Bonding Interface Quality during Laser Sintering of Magnesium Alloys with Zirconia (마그네슘 합금 표면의 지르코니아 분말 레이저 소결과정에서 조사 패턴이 접합 계면 품질에 미치는 영향)

  • Yoon, Sangwoo;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2021
  • The quality of the ceramic sintered coating on a metal surface through laser surface treatment is affected by the laser irradiation pattern. Depending on the laser irradiation pattern, the amount of residual stress and heat applied or accumulated on the surface increases or decreases, affecting the thickness attained in the ceramic sintering area. When the heat energy accumulated in the sintering area is high, the ceramic and the metal alloy melt and sufficiently mix to form a homogeneous and thick bonding interface. In this study, the thermal energy accumulation in the region sintered with zirconia was controlled using four types of laser processing patterns. The thickness of the diffusion region is analyzed by laser-induced breakdown spectroscopy of Mg-ZrO2 generated by laser sintering zirconia powder on the magnesium alloy surface. On the basis of the analysis of the Mg and Zr present in the sintered region through LIBS, the effect of the irradiation pattern on the sintering quality is confirmed by comparing and analyzing the heat and mass transfer tendency of the diffusion layer and the degree of diffusion according to the irradiation pattern. The derived diffusion coefficients differed by up to 9.8 times for each laser scanning pattern.