• Title/Summary/Keyword: Laser Surface Treatment

Search Result 328, Processing Time 0.042 seconds

Influence of Surface Roughness on Friction and Wear Characteristics of SUS 321 for Hydraulic Cylinder Parts Application

  • Sung-Jun Lee;Yonghun Jang;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.244-249
    • /
    • 2023
  • This paper presents a comprehensive analysis of the impact of surface roughness on the friction and wear properties of SUS 321, an austenitic stainless steel variant produced using the laser powder bed fusion (LPBF) technique, which is a prevalent additive manufacturing method. After the LPBF fabrication, the specimens go a heat treatment process aimed at alleviating residual stress. Subsequently, they are polished extensively to achieve a refined and smooth surface. To deliberately introduce controlled variations in surface roughness, an etching process is employed. This multi-step method encompassed primary etching in a 3M hydrochloric acid solution, followed by secondary etching in a 35 wt% ferric chloride solution, with varying durations applied to different specimens. A comprehensive evaluation of the surface characteristics ensued, employing precise techniques such as surface roughness measurements and meticulous assessments of water droplet contact angles. Following the surface treatment procedures, a series of friction tests are performed to explore the tribological behavior of the etched specimens. This in-depth investigation reached its peak by revealing valuable insights. It clarified a strong correlation between intentionally altered surface roughness, achieved through etching processes, and the resulting tribological performance of LPBF-fabricated SUS 321 stainless steel. This significantly advances our grasp of material behavior in tribological applications.

MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

  • Kim, Hyun-Gil;Kim, Il-Hyun;Jung, Yang-Il;Park, Dong-Jun;Park, Jeong-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.521-528
    • /
    • 2014
  • The surface modification of engineering materials by laser beam scanning (LBS) allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS) structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and $Y_2O_3$ particles of $10{\mu}m$ were selected for ODS treatment using LBS. Through the LBS method, the $Y_2O_3$ particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at $500^{\circ}C$ was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive $Y_2O_3$ particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

Hydrophobic Surface Treatment with Anisotropic Characteristics Using Laser Selective Deposition (레이저 선택적 증착을 통한 이방특성의 소수성 표면처리)

  • Kim, Ji-Hun;Kwon, Ye-Ji;Yang, Hoon-Seok;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.109-115
    • /
    • 2020
  • Surfaces with various roughnesses were produced through laser processing, and the anisotropy and hydrophobicity of the surfaces were examined in the context of the microstructures. The fine particles transferred to the glass surface exhibited different sizes, and the roughness increased. Due to the change in the roughness, the liquid could not penetrate the space between the fine particles, and it was thus exposed to the air. We analyzed this phenomenon using the combined Wenzel and Cassie-Baxter models. Excessive fine particle formation on the substrate tended to increase the roughness and surface energy. The silver-glass-air contact analysis could clarify the mechanism of the reduction of the contact angle and differences in the metastable and stable states when the particles did not completely cover the glass substrate. The formation of microstructures with fine particles through the laser selective deposition led to the generation of an anisotropic surface as the water droplets diffused toward the glass substrate with a relatively high surface energy level.

Study on Improvement of Surface Properties of Low Carbon Steel Using Laser Cladding

  • Cheol-Woo Kim;Hyo-Sang Yoo;Jae-Yeol Jeon;Kyun-Taek Cho;Se-Weon Choi
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.1033-1036
    • /
    • 2021
  • Laser cladding is a method that can be applied to repair the crack and break on the mold and die surfaces, as well as generate new attributes on the surface to improve toughness, hardness, and corrosion resistance. It is used to extend the life of the mold. It also has the advantages of superior bonding strength and precision coating on a local area compared with the conventional thermal spraying technology. In this study, we investigated the effect of cladding on low carbon alloy steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), which showed high hardness on the die surface. The process conditions were performed in an argon atmosphere using a diode laser source specialized for 900-1070 nm, and the output conditions were 5, 6, and 10 kW, respectively. After the cladding was completed, the surface coating layer's shape, the hardness according to the cross-section's thickness, and the microstructure were analyzed.

Effect of Post-clad Heat Treatment on Microstructures and Mechanical Properties of Cu-NiCrBSi Dissimilar Laser Clads (후열처리에 따른 Cu-NiCrBSi 이종 레이저 클래드부의 미세조직 및 기계적 성질 변화)

  • Kim, Kyeong-Min;Jeong, Ye-Seon;Sim, Ahjin;Park, Wonah;Park, Changkyoo;Chun, Eun-Joon
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.465-473
    • /
    • 2020
  • For surface hardening of a continuous casting mold component, a fundamental metallurgical investigation on dissimilar laser clads (Cu-NiCrBSi) is performed. In particular, variation behavior of microstructures and mechanical properties (hardness and wear resistance) of dissimilar clads during long-term service is clarified by performing high-temperature post-clad heat treatment (temperature range: 500 ~ 1,000 ℃ and isothermal holding time: 20 ~ 500 min). The microstructures of clad metals (as-clads) consist of fine dendrite morphologies and severe microsegregations of the alloying elements (Cr and Si); substrate material (Cu) is clearly confirmed. During the post-clad heat treatment, the microsegregations are totally homogenized, and secondary phases (Cr-based borides and carbides) precipitated during the short-term heat treatment are also almost dissolved, especially at the heat treatment conditions of 950 ℃ for 500 min. Owing to these microstructural homogenization behaviors, an opposite tendency of the surface mechanical properties can be confirmed. In other words, the wear resistance (wear rate) improves from 4.1 × 10-2 ㎣/Nm (as-clad condition) to 1.4 × 10-2 ㎣/Nm (heat-treated at 950 ℃ for 500 min), whereas the hardness decreases from 453 HV (as-clad condition) to 142 HV (heat-treated at 950 ℃ for 500 min).

Laser therapy in peri-implantitis treatment: literature review (임플란트주위염 처치에서 레이저의 이용: 문헌고찰)

  • Lee, Kyung-Joong;Lee, Jong-Ho;Kum, Kee-Yeon;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.340-348
    • /
    • 2015
  • Peri-implantitis is the most common reason for a late failure and can occur even after years of successful osseointegration. The role of microbial plaque accumulation in the development of peri-implantitis has been well documented. On the other hand, the ideal method of implant surface decontamination to re-establish the health of peri-implant tissue remains to be determined. Removal of bacterial deposits is essential in the treatment of peri-implant infections, and various therapeutic approaches have been described in the literature, including mechanical debridement, disinfection with chemotherapeutic agents, and laser therapy. Recently, there has been a plenitude of scientific data regarding the use of laser irradiation to achieve titanium surface decontamination. Thus, research is focusing on lasers' potential use in the treatment of peri-implantitis. The aim of this literature review is to analyze and evaluate the efficacy of laser therapy for the treatment of peri-implantitis.

Analysis of temperature changes and sterilization effect of diode laser for the treatment of peri-implantitis by wavelength and irradiation time (임플란트 주위염 치료용 diode laser의 파장 및 조사시간에 따른 온도 변화와 살균효과 분석)

  • Seol, Jeong-Hwan;Lee, Jun Jae;Kum, Kee-Yeon;Lee, Jong-Ho;Lim, Young-Joon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.178-188
    • /
    • 2017
  • Purpose: We compared the effects of newly developed diode laser (Bison 808 nm Diode laser) on the treatment of peri-implantitis with conventional products (Picasso 810 nm Diode laser) by comparing the surface temperature of titanium disc and bacterial sterilization according to laser power. Materials and Methods: The titanium disc was irradiated for 60 seconds and 1 - 2.5 W using diode laser 808 nm and 810 nm. The surface temperature of the titanium disc was measured using a temperature measurement module and a temperature measurement program. In addition, in order to investigate the sterilizing effect according to the laser power, 808 nm laser was irradiated after application of bacteria to sandblasted large-grit acid-etched (SLA) and resorbable blast media (RBM) coated titanium discs. The irradiated disks were examined with scanning electron microscopy. Results: Both 808 nm and 810 nm lasers increased disk surface temperature as the power increased. When the 810 nm was irradiated under all conditions, the initial temperature rise rate, the descending rate, and the temperature change before and after was higher than that of 808 nm. Disk surface changes were not observed on both lasers at all conditions. Bacteria were irradiated with 808 nm, and the bactericidal effect was increased as the power increased. Conclusion: When applying these diode lasers to the treatment of peri-implantitis, 808 nm which have a bactericidal effect with less temperature fluctuation in the same power conditions would be considered safer. However, in order to apply a laser treatment in the dental clinical field, various safety and reliability should be secured.

Heat treatment characteristics of medium carbon steel by CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강의 열처리특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.438-443
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power CO2 lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

Surface Alloying of Iron Base Rapid Solidification Materials Using Laser Beam (레이저 빔을 이용한 철계 급랭 응고 재료의 표면 합금화)

  • Nam, K.S.;Lee, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.229-233
    • /
    • 1996
  • This work has been carried out to reduce the softening of heat affected zone on laser surface alloying. Iron based rapid solidification material with $Cr_{5-10}$, $V_{1-3}$, $Mo_{3-7}$, $W_{2-5}$, $B_{7-8}$, $C_{2-3}$, $Si_{0.5-1}at%$ was alloyed on the surface of SM45C steel. The excellent softening resistance in alloyed and heat affected zone showed, which could be attributed to the formation of stable high temperature precipitates.

  • PDF