• 제목/요약/키워드: Laser Sensors

검색결과 459건 처리시간 0.021초

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

자동차 글라스 조립 자동화설비를 위한 FPGA기반 실러 도포검사 비전시스템 개발 (Development of an FPGA-based Sealer Coating Inspection Vision System for Automotive Glass Assembly Automation Equipment)

  • 김주영;박재률
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, an FPGA-based sealer inspection system was developed to inspect the sealer applied to install vehicle glass on a car body. The sealer is a liquid or paste-like material that promotes adhesion such as sealing and waterproofing for mounting and assembling vehicle parts to a car body. The system installed in the existing vehicle design parts line does not detect the sealer in the glass rotation section and takes a long time to process. This study developed a line laser camera sensor and an FPGA vision signal processing module to solve this problem. The line laser camera sensor was developed such that the resolution and speed of the camera for data acquisition could be modified according to the irradiation angle of the laser. Furthermore, it was developed considering the mountability of the entire system to prevent interference with the sealer ejection machine. In addition, a vision signal processing module was developed using the Zynq-7020 FPGA chip to improve the processing speed of the algorithm that converted the profile to the sealer shape image acquired from a 2D camera and calculated the width and height of the sealer using the converted profile. The performance of the developed sealer application inspection system was verified by establishing an experimental environment identical to that of an actual automobile production line. The experimental results confirmed the performance of the sealer application inspection at a level that satisfied the requirements of automotive field standards.

금속 나노 파티클의 레이저 플라즈모닉 어닐링을 통한 메탈메쉬 전극 형성과 이를 활용한 유연 터치 센서 (Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors)

  • 정성민;황윤식;우유미;조용준;김찬혁;안민기;서호석;양찬현;박귀일;박정환
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.223-229
    • /
    • 2024
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) holds significant promise as a technology for producing flexible conducting electrodes. This method offers immediate, straightforward, and scalable manufacturing approaches, eliminating the need for expensive facilities and intricate processes. Nevertheless, the metal NPs come at a high cost due to the intricate synthesis procedures required to ensure long-term reliability in terms of chemical stability and the prevention of NP aggregation. Herein, we induced the self-generation of metal nanoparticles from Ag organometallic ink, and fabricated highly conductive electrodes on flexible substrates through laser-assisted plasmonic annealing. To demonstrate the practicality of the fabricated flexible electrode, it was configured in a mesh pattern, realizing multi-touchable flexible touch screen panel.

ELA: 가변 형상 구조로봇의 자율주행을 위한 실시간 장애물 회피 기법 (ELA: Real-time Obstacle Avoidance for Autonomous Navigation of Variable Configuration Rescue Robots)

  • 정해관;현경학;김수현;곽윤근
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.186-193
    • /
    • 2008
  • We propose a novel real-time obstacle avoidance method for rescue robots. This method, named the ELA(Emergency Level Around), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward safe position. In the ELA, we consider two sensor modules, PSD(Position Sensitive Detector) infrared sensors taking charge of obstacle detection in short distance and LMS(Laser Measurement System) in long distance respectively. Hence if a robot recognizes an obstacle ahead by PSD infrared sensors first, and judges impossibility to overcome the obstacle based on driving mode decision process, the order of priority is transferred to LMS which collects data of radial distance centered on the robot to avoid the confronted obstacle. After gathering radial information, the ELA algorithm estimates emergency level around a robot and generates a polar histogram based on the emergency level to judge where the optimal free space is. Finally, steering angle is determined to guarantee rotation to randomly direction as well as robot width for safe avoidance. Simulation results from wandering in closed local area which includes various obstacles and different conditions demonstrate the power of the ELA.

  • PDF

감지 정보의 개념화에 의한 온톨로지 기반의 자율주행 시스템의 설계 (Design of an Ontology-based Autonomous Navigation System with Conceptualization of Sensing Information)

  • 정혜천;이인근;서석태;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.579-585
    • /
    • 2008
  • 최근 외부의 개입 없이 스스로 주변 환경을 파악하고 목적지까지의 이동경로를 생성하여 자율 주행하는 지능형 시스템에 관한 연구가 활발히 진행되고 있다. 이러한 자율 주행 시스템은 기본적으로 운행 중에 사고가 발생하지 않고 안전하게 목표점까지 이동해야 한다. 이를 위해 다양한 센서를 자율 주행 시스템에 장착하여 장애물을 인식하는 방법을 사용하고 있다. 본 논문에서는 레이저 변위 센서 및 카메라를 장착한 온톨로지 기반의 자율주행 시스템을 설계하고, 감지정보를 개념화하는 방법을 제안한다. 그리고 자율 주행 시스템의 자율 주행 실험을 통해 제안 기법의 타당성을 보인다.

수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정 (Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors)

  • 이권호
    • 한국대기환경학회지
    • /
    • 제28권2호
    • /
    • pp.159-171
    • /
    • 2012
  • Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).

용접선 자동추적을 위한 이중 전자기센서의 개발에 관한 연구 (A Study of a Dual-Electromagnetic Sensor for Automatic Weld Seam Tracking)

  • 신준호;김재응
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.70-75
    • /
    • 2000
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal butt-joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor were determined for the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 mm, and it was revealed that the system has excellent seam tracking ability for the butt-joint of sheet metal.

  • PDF

RFID 태그플로어 방식의 내비게이션에 관한 연구 (A Study on the RFID Tag-Floor Based Navigation)

  • 최정욱;오동익;김승우
    • 제어로봇시스템학회논문지
    • /
    • 제12권10호
    • /
    • pp.968-974
    • /
    • 2006
  • We are moving into the era of ubiquitous computing. Ubiquitous Sensor Network (USN) is a base of such computing paradigm, where recognizing the identification and the position of objects is important. For the object identification, RFID tags are commonly used. For the object positioning, use of sensors such as laser and ultrasonic scanners is popular. Recently, there have been a few attempts to apply RFID technology in robot localization by replacing the sensors with RFID readers to achieve simpler and unified USN settings. However, RFID does not provide enough sensing accuracy for some USN applications such as robot navigation, mainly because of its inaccuracy in distance measurements. In this paper, we describe our approach on achieving accurate navigation using RFID. We solely rely on RFID mechanism for the localization by providing coordinate information through RFID tag installed floors. With the accurate positional information stored in the RFID tag, we complement coordinate errors accumulated during the wheel based robot navigation. We especially focus on how to distribute RFID tags (tag pattern) and how many to place (tag granularity) on the RFID tag-floor. To determine efficient tag granularities and tag patterns, we developed a simulation program. We define the error in navigation and use it to compare the effectiveness of the navigation. We analyze the simulation results to determine the efficient granularities and tag arrangement patterns that can improve the effectiveness of RFID navigation in general.

간섭형 광섬유센서의 신호처리 기법 (A signal processing technique for interferometric fiber-optic sensors)

  • 예윤해
    • 한국광학회지
    • /
    • 제6권4호
    • /
    • pp.365-372
    • /
    • 1995
  • 취상변조기나 3*3 광결합기와 같은 특수 광부품을 사용하지 않고도 간섭형 센서의 고감도를 유지할 수 있고, 주변환경의 변화에도 영향을 받지 않는 간섭형 광섬유 센서를 위한 신호처리 기술을 소개하였다. 이 기법은 간섭형 센서의 넓은 다이나믹 레인지와 고감도를 유지한 신호처리를 위해 레이저 다이오드의 주파수 처핑을 이용하며 주변환경의 변화에 의한 측정에러를 보상하기 위해 별도의 간섭계를 기준 간섭계로 사용하였다. 새로운 신호처리 기법을 거울 내장형 Fabry-Perot(FT) 간섭계 온도센서에 적용한 결과 1cm 광섬유 FP 간섭계 센서소자로 부터 $4\times10^{-3\circ}C$(광위상 4.5mrad)의 분해능을 얻었으며 광위상 변화량의 크기가 $\pi$ 이내로 제한되지 않으므로 다이나믹 레인지가 넓은 온도센서의 구현이 가능하였다.

  • PDF

다수의 초음파 송수신기를 이용한 이동 로봇의 정밀 실내 위치인식 시스템의 개발 (Development of Precise Localization System for Autonomous Mobile Robots using Multiple Ultrasonic Transmitters and Receivers in Indoor Environments)

  • 김용휘;송의규;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.353-361
    • /
    • 2011
  • A precise embedded ultrasonic localization system is developed for autonomous mobile robots in indoor environments, which is essential for autonomous navigation of mobile robots with various tasks. Although ultrasonic sensors are more cost-effective than other sensors such as LRF (Laser Range Finder) and vision, they suffer inaccuracy and directional ambiguity. First, we apply the matched filter to measure the distance precisely. For resolving the computational complexity of the matched filter for embedded systems, we propose a new matched filter algorithm with fast computation in three points of view. Second, we propose an accurate ultrasonic localization system which consists of three ultrasonic receivers on the mobile robot and two or more transmitters on the ceiling. Last, we add an extended Kalman filter to estimate position and orientation. Various simulations and experimental results show the effectiveness of the proposed system.