• Title/Summary/Keyword: Laser Resonant Ultrasound Spectroscopy(L-RUS)

Search Result 4, Processing Time 0.021 seconds

Development of Laser-Based Resonant Ultrasound Spectroscopy(Laser-RUS) System for the Detection of Micro Crack in Materials (재료의 미세결함 검출을 위한 레이저 공명 초음파 분광(Laser-RUS)시스템 개발)

  • Kang, Young-June;Kim, Jin-Soo;Park, Seung-Kyu;Baik, Sung-Hoon;Choi, Nag-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Non-contacting, laser-based resonant ultrasound spectroscopy (L-RUS) was applied to characterize the microstructure of a material. L-RUS is widely used by virtue of its many features. Firstly, L-RUS can be used to measure mechanical damping which related to the microstructural variations (grain boundary, grain size, precipitation, defects, dislocations etc). Secondly, L-RUS technology can be applied to various areas, such as the noncontact and nondestructive quality test for precision components as well as noncontact and nondestructive materials characterization. In addition, L-RUS technology can measure the whole field resonant frequency at once. In this paper, we evaluated material characteristics such as resonant frequency, nonlinear propagation characteristic through the development of Laser-Based Resonant Ultrasound spectroscopy (Laser-RUS) System for the detection of Micro Crack in Materials.