• Title/Summary/Keyword: Laser Metal Deposition

Search Result 148, Processing Time 0.021 seconds

Surface Hardness as a Function of Laser Metal Deposition Parameters (레이저 메탈 디포지션 변수에 의한 표면경도 특성 분석)

  • Kim, WH;Jung, BH;Park, ID;Oh, MH;Choi, SW;Kang, DM
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • The characteristics of the laser metal deposition parameters were studied to enhance the deposition efficiency using a diode pumped disk laser. STD61 hot tool steel plate and Fe based AISI M2 alloy were used as a substrate and powder for the laser metal deposition, respectively. Among the laser metal deposition parameters the laser power, track pitch and powder feed rate were used to estimate the deposition efficiency. From the experimental results, the deposition efficiency was shown to be excellent when 1.8kW laser power 500um track pitch and 10g/min of the powder feed rate were used. For this optimal condition the average hardness of the deposition track was approximately 830HV, and this value is 30~50% better than the hardness of the commercially produced tool steel after heat treatment.

Effect Analysis in Laser Metal Deposition of SKD61 by Track Pitch (트랙 이행거리에 따른 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석)

  • Kim, Won-Hyuck;Jung, Byung-Hun;Oh, Myeong-Hwan;Choi, Seong-Won;Kang, Dae Min
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.94-99
    • /
    • 2014
  • In this study, AISI M2 powder was selected primarily through various literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode pumped disk laser. SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Fixed parameters are CTWD, focal position, travel speed, powder feed rate, etc. Experiments for the laser metal deposition were carried out by changing laser power. Through optical micrographs analysis of cross-section in LMD track, effect of the major parameters were predicted by track pitch. As the track pitch increased, so the reheated zone width, the overlap width and the minimum thickness was decreased. The hardness was decreased in the HAZ area, the hardness in the reheated HAZ area was decreased significantly and regularly in particular.

Effect analysis in Laser Metal Deposition of SKD61 using AISI M2 power (AISI M2 파우더를 이용한 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석)

  • Kim, Won-Hyuck;Jung, Byung-Hun;Oh, Myeong-Hwan;Choi, Seong-Won;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.50-56
    • /
    • 2015
  • In this study, AISI M2 powder was selected primarily through various pieces of literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode-pumped disk laser. An SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Experiments for the laser metal deposition were carried out by changing the laser power and track layer. The quality of the track surface and cross-section after applying the single-layer method was better than that obtained from applying the multi-layer method. As the laser power increased, the track thickness was increased, and the surface roughness deviation was decreased. In laser power condition of 1.6kW, the maximum hardness of the deposition track was 790Hv. This value was 40% better than the hardness of the SKD61 after heat treatment.

Analysis of Laser Control Effects for Direct Metal Deposition Process

  • Choi Joo-Hyun;Chang Yoon-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1680-1690
    • /
    • 2006
  • As a promising and novel manufacturing technology, laser aided direct metal deposition (DMD) process produces near-net-shape functional metal parts directly from 3-D CAD models by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using two sets of optical height sensors is designed for monitoring the melt-pool and real-time control of deposition dimension. With the feedback height control system, the dimensions of part can be controlled within designed tolerance maintaining real time control of each layer thickness. Clad nugget shapes reveal that the feedback control can affect the nugget size and morphology of microstructure. The pore/void level can be controlled by utilizing pulsed-mode laser and proper design of deposition tool-path. With the present configuration of the control system, it is believed that more innovation of the DMD process is possible to the deposition of layers in 3-D slice.

Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel (공구강을 이용한 레이저 직접 금속조형 공정의 적층 특성)

  • 장윤상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.327-330
    • /
    • 2004
  • Laser aided direct metal deposition (LADMD) process offers the ability to make a metal component directly from 3-D CAD dimensions. A 3-D object can be formed by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using optical sensors is introduced to control laser power and powder mass flow rate. Using H13 tool steel and $CO_2$ laser system, comprehensive analysis are executed to test the efficiency of the system. In addition, the dimensional characteristics of directed deposited material are investigated with the parameters of deposition thickness, laser power, traverse speed and powder mass flow rate.

  • PDF

Laser-Aided Direct Metal Deposition (DMD) Technology (레이저를 이용한 직접금속조형(DMD) 기술)

  • 지해성;서정훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.150-156
    • /
    • 2003
  • Direct Metal Deposition (DMD) is a new additive process producing three-dimensional metal components or tools directly from CAD data, which aims to take mold making and metalworking in an entirely new direction. It is the blending of five common technologies: lasers, CAD, CAM, sensors and materials. In the resulting process, alternatively called laser cladding, an industrial laser is used to locally heat a spot on a tool-steel work piece or platform, forming a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the metal pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is eventually built line-by-line, one layer at a time. DMD produces improved material properties in less time and at a lower cost than is possible with traditional fabrication technologies.

Recent Studies of Laser Metal 3D Deposition with Wire Feeding (와이어 송급 레이저 금속 3차원 적층 연구동향)

  • Kam, Dong-Hyuck;Kim, Young-Min;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Recent developments of Laser metal 3D deposition with wire feeding are reviewed which provide an alternative to powder feeding method. The wire feeding direction, angle and position as well as laser power, wire feeding rate, and deposition speed are found to be key parameters to make quality deposition with high throughput. When compared with the powder feed, the wire feed shows higher material efficiency, higher deposition rate, and smoother surface. Large elongated columnar grains which have epitaxial growth across deposit layers are observed in deposit cross sections. The growth direction is parallel to the thermal gradient during the deposit process. Tensile properties are found to be dependent on the direction due to the anisotropic deposit property. A real-time feedback control is demonstrated to be effective to improve the deposition stability.

Characteristics of Laser Aided Direct Metal Powder Deposition Process for Nickel-based Superalloy

  • Zhang, Kai;Liu, Weijun;Shang, Xiaofeng
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.521-522
    • /
    • 2006
  • Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer aided design, laser cladding and rapid prototyping. The advanced technology can build fully-dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" is being developed significantly. The microstructure and mechanical properties of the LMDS-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead time.

  • PDF

Modeling of Deposition Height in the Uncontrolled Laser Aided Direct Metal Deposition Process (비 제어 상태의 레이저 직접 금속성형공정에서 적층높이의 모델링)

  • Chang, Yoon-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • Models of the deposition heights in the uncontrolled laser aided direct metal deposition process are constructed for the enhancement of the process integrity. Linear and non-linear statistical models as well as fuzzy model are utilized as the modeling methods. The predictability of the models are evaluated with the values of the sum of square error. The algorithm to use the models in the feedback controlled system is suggested to increase the deposition height accuracy within a layer.

  • PDF

A Study on the Uniform Metal-Droplet Deposition Using Laser (레이저를 이용한 균일 금속액적 적층에 관한 연구)

  • 유성복;김용욱;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.667-670
    • /
    • 2002
  • Uniform metal-droplet deposition using laser is analyzed. Using the variation principle and modeling the semi-solid phase as a non-Netwonian slurry, this model can greatly save the computational expenses that conventional numerical procedures have suffered from. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of the falling distance and time.

  • PDF