• Title/Summary/Keyword: Laser Material Process

Search Result 432, Processing Time 0.023 seconds

Hydrogen annealing effect of ferroelectric films fabricated by pulsed laser deposition (펄스 레이저 증착법으로 층착된 강유전 박막의 수소후열처리에 관한 효과 연구)

  • 한경보;전창훈;전희석;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.395-397
    • /
    • 2002
  • Dielectric thin films of Pb$\_$0.72/La$\_$0.28/Ti$\_$0.93/O$_3$(PLT(28)) have been deposited on Pt(111)/Ti/SiO$_2$/Si(100) substrates in-situ by pulsed laser deposition using different annealing and deposition processes. We have investigated the effect of hydrogen annealing on the ferroelectric properties of PLT thin films and found that the annealing process causes the diffusion of hydrogen into the ferroelectric film resulting in the destruction of polarization. Two-step process to grow PLT films was adopted and verified to be useful to enlarge the grain size of the film. Structural properties including dielectric constant, and ferroelectric characteristics of PLT thin films were shown to be strongly influenced by grain size. The film deposited by using two-step process including pre-annealing treatment has a strong (111) orientation. However, the films deposited by using single-step process with hydrogen annealing process shows the smallest grain size.

  • PDF

Effect of Process Stopping and Restarting on the Microstructure and Local Property of 316L Stainless Steel Manufactured by Selective Laser Melting Process (선택적 레이저 용융 공정을 이용한 316L 스테인리스 강의 제조 시 공정 중단 및 재 시작이 미세조직과 국부 물성에 미치는 영향)

  • Joo, Hyunjin;Woo, Jeongmin;Sohn, Yongho;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.

A Study on the Shape Correction of Stamped Parts by the Irradiation of Laser (레이저를 이용한 스탬핑 제품의 스프링백 형상교정에 관한 연구)

  • Shim, H.B.;Kim, D.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.519-530
    • /
    • 2009
  • The study is concerned with shape correction of stamped product using the laser irradiation. As a fundamental study, laser irradiation process has been analyzed through the thermo-mechanical FE analysis. For the purpose of validation, laser scanning experiment has been carried out also. Since the deformation mechanism involved in the laser scanning is extremely complicated due to the highly temperature dependent material properties, the determination of laser scanning pattern is not easy for the application of real stamped parts. A simplified method for the application of springback correction has been suggested with the thermo-mechanical FE analysis.

A weldability of thick materials with 10kW fiber laser and its application (10kW 화이버레이저를 이용한 후판소재 용접 및 응용)

  • Lee, Mok-Yeong;Ryu, Chung-Seon;Jang, Ung-Seong;Park, Seo-Jeong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.177-180
    • /
    • 2007
  • The laser welding process was effective way to join the metals, because of the high productivity, the low distortion and the good weld quality. The fiber laser used the double-clad fiber architecture, the single element diode laser and the fully-spliced side pumping. It has the advantages in the views of the energy conversion efficiency, the beam quality, the robustness and the mobility. Recently, the thick material was welded with the high power laser in ship building or construction industry owing to the super bright fiber laser. In this study, we introduced the characteristics of high power fiber laser and its welding performance of thick gauge materials.

  • PDF

Laser Micro-Joining and Soldering (레이저 마이크로 접합 및 솔더링)

  • Hwang, Seung Jun;Kang, Hye Jun;Kim, Jeng O;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • In this paper, the principles, types and characteristics of the laser and laser soldering are introduced. Laser soldering methods for electronics, metals, semiconductors are also presented. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled beam. Demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro joint. Laser absorption ratio depends on materials, and each material has different absorption or reflectivity of the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance. In this paper, the performance of Nd:YAG laser soldering is compared to the hot blast reflow. Meanwhile, a diode laser gives different wavelength and smaller parts with high performance, but it has various reliability issues such as heat loss, high power, and cooling technology. These issues need to be improved in the future, and further studies for laser micro-joining and soldering are required.

Analysis of the microstructure of melting-pool in aluminum specimens fabricated by SLM technique (SLM 기법으로 제작한 알루미늄 시편 내부 멜팅풀 미세조직 분석)

  • Kim, Moo-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.115-119
    • /
    • 2020
  • Selective Laser Melting (SLM) technology is state-of-the-art additive manufacturing process technology that produces a three-dimensional structure by irradiating a laser on a fine metal powder to perform the fusion of a specific area and repeat this process. Owing to the characteristics of the additive manufacturing process, the melting phenomenon of the metal material by the laser has directionality depending on the process conditions, such as the irradiation direction of the laser and the build-up direction. For this reason, the composition of the metal material in the structure exhibits non-uniform characteristics. In this study, aluminum (AlSi10Mg) specimens were manufactured by applying SLM technology, and the material composition characteristics of the specimen were analyzed. The specimens were manufactured as cylinders by the build-up orientation of 0°, 45°, and 90°. The surface morphology of the specimen plane was analyzed optically. TEM analysis was performed on the core and the interface of the melting-pool inside the specimen generated by laser irradiation. The analysis results confirmed that there was a difference between the nano cell structure of the core and the interface of the melting-pool, and that the composition ratio of Si appeared higher at the interface than at the core of the cell.

A Finite Element Model of Melt Pool for the Evaluation of Selective Laser Melting Process Parameters (선택적 레이저 용융 공정의 공정변수 평가를 위한 용융풀 유한요소 모델)

  • Lee, Kanghyun;Yun, Gun Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.195-203
    • /
    • 2020
  • Selective laser melting(SLM) is one of the powder bed fusion(PBF) processes, which enables quicker production of nearly fully dense metal parts with a complex geometry at a moderate cost. However, the process still lacks knowledge and the experimental evaluation of possible process parameter sets is costly. Thus, this study presents a finite element analysis model of the SLM process to predict the melt pool characteristics. The physical phenomena including the phase transformation and the degree of consolidation are considered in the model with the effective method to model the volume shrinkage and the evaporated material removal. The proposed model is used to predict the melt pool dimensions and validated with the experimental results from single track scanning process of Ti-6Al-4V. The analysis result agrees with the measured data with a reasonable accuracy and the result is then used to evaluated each of the process parameter set.

A study on the hard surfacing Characteristics of STS420J2 by using Diode laser (Diode laser를 이용한 STS420J2의 표면경화 특성에 관한 연구)

  • Lee, Tae-Yang;Lim, Byung-Chul;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5460-5466
    • /
    • 2014
  • In this study, mainly for kitchen knives and small swords, cutlery, etc. STS420J2 used material used for the experiments. In order to cure the surface of the test piece after the rough grinding and fine grinding was performed in order polishing. Perform the surface hardening of STS420J2 local area by using a diode laser. The output of the laser diode and the feed rate to the process variable. Micro-hardness testing, microstructure testing, scanning electron microscope testing(SEM), the heat input to the analysis. After analyzing the experiment to compare the mechanical properties of the material. When using a diode laser to assess the soundness of the surface hardening. Accordingly, the process for deriving the optimum demonstrate the feasibility.

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

Forming Limits for the Welded Sheets (용접판재의 성형한계에 관한 실험적 연구)

  • 허영무;김형목;서대교
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.429-436
    • /
    • 1999
  • In sheet metal forming , forming limit diagram is very important to design and analyze of sheet metal forming process. Recently tailor welded blanks of different thickness and different material and strength combinations are used widely in automobile industry to reduce car manufacturing cost. In order to analyze the forming characteristics of tailored welded blanks, we have investigated the forming limit dia-grams for 3 kinds of different material using mash seam and laser welding experimentally and dis-cussed for the characteristics of forming for tailor welded blanks. It is concluded that forming limit dia-gram for the different material combination TWB locates between FLD of the thinner base material sheet and the thicker ones.

  • PDF