• Title/Summary/Keyword: Laser Material Process

Search Result 432, Processing Time 0.025 seconds

A Study on the Argon Laser Assisted Thermochemical Micro Etching (레이저를 이용한 미세에칭에 관한 연구)

  • 박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF

Fabrication of Micro Conductor Pattern on Polymer Material by Laser Induced Surface Activation Technology

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.327-332
    • /
    • 2020
  • Laser induced surface activation (LISA) technology requires refined selection of process variables to fabricate conductive microcircuits on a general polymer material. Among the process variables, laser mode is one of the crucial factors to make a reliable conductor pattern. Here we compare the continuous wave (CW) laser mode with the pulse wave (PW) laser mode through determination of the surface roughness and circuit accuracy. In the CW laser mode, the surface roughness is pronounced during the implementation of the conductive circuit, which results in uneven plating. In the PW laser mode, the surface is relatively smooth and uniform, and the formed conductive circuit layer has few defects with excellent adhesion to the polymer material. As a result of a change of laser mode from CW to PW, the value of Ra of the polymer material decreases from 0.6 ㎛ to 0.2 ㎛; the value of Ra after the plating process decreases from 0.8 ㎛ to 0.4 ㎛, and a tight bonding force between the polymer source material and the conductive copper plating layer is achieved. In conclusion, this study shows that the PW laser process yields an excellent conductive circuit on a polymeric material.

Analysis of Heat Transfer by Various Laser Beam Patterns in Laser Material Process (가변 레이저 빔 패턴에 따른 열영향 해석)

  • Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.37-44
    • /
    • 2018
  • In laser material processing for high thermal conductivity, the thermal effect of laser beam shape was examined through computer simulations. In this paper, a circular beam with a focal radius of $500{\mu}m$, an elliptical beam with a major axis of 4 mm and a minor axis of 1 mm, and a rotating beam with a focal radius of $500{\mu}m$ and an angular velocity of 5 rad/sec were compared. Simulation results showed that there was no clear difference in the maximum temperature between the circular focus and the elliptical shape, but the heating and cooling rates were different. The simulation result for a laser beam rotating in a circular pattern with a radius of 5 mm showed an asymmetric temperature rise due to the combination of linear and rotational motion. At points where the rotational and linear speeds combined, the temperature gradually rose and reached the maximum temperature; whereas at points where the rotational and linear speeds were attenuated, the temperature tended to gradually decrease after reaching the maximum temperature. Based on the results of this study, the authors expect to be able to optimize laser material processing by designing patterns of laser beams.

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

Characteristics of Surface Hardened Press Die Materials by CO2 Laser Beam Irradiation (CO2 레이저 빔 조사에 의한 프레스 금형재료의 표면경화 특성)

  • Yang, Se-Young;Choi, Seong-Dae;Choi, Myeong-Soo;Jun, Jae-Mok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently, the technology of surface treatment is being more important which affects the material cost reduction and substitution to the expensive material. The material used for the mechanical processing should have not only high intensity, but also strength toughness, wear resistance and corrosion resistance. In order to increase the durability and have better quality of the parts using such kind of tooling material, various kinds of research of the surface hardening through many kinds of heat resources is being done and practically applied. In this study, the characteristics of hardening surface zone for high strength of the press die material through laser beam irradiation are researched. In this study, it is experimentally observed by the status of the surface morphology, tensile strength, the hardness distribution of the base metal and wear condition by the surface hardness pattern by the laser beam based on the process parameters of $CO_2$ laser by using SM45C and STD11 used for press tool. Through this research, the characteristics of surface hardened zone for high strength of the thin metal by laser beam irradiation is done.

Scattering analysis of laser beam drilling in porous ceramic materials (극초단 레이저를 이용한 기공성 세라믹 드릴링시 발생하는 레이저빔 산란해석)

  • Choi, Hae Woon
    • Laser Solutions
    • /
    • v.15 no.4
    • /
    • pp.6-11
    • /
    • 2012
  • Laser beam can be either absorbed or scattered in porous ceramic material and its optical characteristics need to be understood. Electro-magnetic multiphysics software was used to simulate and understand the actual scattering phenomena in porous materials. 785nm femtosecond laser was irradiated on the surface of ceramic material and strong scattering occurred in drilling process. The computer results showed the scattering and absorption phenomena of Aluminum oxide were a mixture of dielectric and metallic material. The computer simulation showed the laser beam was almost extinct at the aspect rate of 5 approximately.

  • PDF

Microstructure and Liquid Al Erosion Property of Tribaloy T-800 Coating Material Manufactured by Laser Cladding Process (Laser Cladding 공정으로 제조된 Tribaloy T-800 코팅 소재의 미세조직 및 용융 Al 침식 특성)

  • Kim, Kyoung-Wook;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.210-218
    • /
    • 2020
  • A T-800 (Co-Mo-Cr) coating material is fabricated using Co-Mo-Cr powder feedstock and laser cladding. The microstructure and melted Al erosion properties of the laser-cladded T-800 coating material are investigated. The Al erosion properties of the HVOF-sprayed MoB-CoCr and bulk T-800 material are also examined and compared with the laser-cladded T-800 coating material. Co and lave phases (Co2MoCr and Co3Mo2Si) are detected in both the laser-cladded T-800 coating and the bulk T-800 materials. However, the sizes of the lave phases are measured as 7.9 ㎛ and 60.6 ㎛ for the laser-cladded and bulk T-800 materials, respectively. After the Al erosion tests, the erosion layer thicknesses of the three materials are measured as 91.50 ㎛ (HVOF MoB-CoCr coating), 204.83 ㎛ (laser cladded T-800), and 226.33 ㎛ (bulk T-800). In the HVOF MoB-CoCr coating material, coarse cracks and delamination of the coating layer are observed. On the other hand, no cracks or local delamination of the coating layer are detected in the laser T-800 material even after the Al erosion test. Based on the above results, the authors discuss the appropriate material and process that could replace conventional bulk T-800 materials used as molten Al pots.

Conductivity Pattern Manufacture Technology of Solid Surface Compound Polymer Material (입체면 복합 폴리머 소재의 전도성 패턴 제작 기술)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.224-234
    • /
    • 2016
  • This study developed the conductivity pattern of solid surface using laser direct pattern and compound polymer material technology. For development direct patterning system of solid surface, we used the laser power stabilizer, the dynamic focusing, 3D scanner S/W and the auto aligning techniques. Also For conductivity pattern, we are developed compound polymer material with additive by electro-less plating. These technologies are already used commercially. However operation and control integrated system for direct patterning of solid surface are not yet developed. The objective of this paper is to introduce the laser direct structuring for simple process improvement instead complex PCB process, and develop the operating stability and integration system. Also we implemented new application of laser direct structuring through sample manufacture.

Study of clean laser decapsulation process (친환경 레이저 디캡슐레이션에 관한 연구)

  • Hong, Yun-Seok;Mun, Seong-Uk;Nam, Gi-Jung;Choe, Ji-Hun;Yun, Myeon-Geun
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.103-107
    • /
    • 2006
  • Decapsulation of EMC(Epoxy Molding Compound) in package device is a method used to inspect inside of device by removing plastic molding. So far, chemical etching and mechanical grinding methods have been used widely. Recently, several works using laser have been carried out. This method has advantages with fast process time and precision than conventional methods because of noncontact process. Also, laser process is a clean process because of removing EMC directly without using toxic chemicals. The wavelength of laser used in this study is 355nm. Key parameters of removing EMC are laser power, scan speed, and number of scans of laser. It if confirmed that laser decapsulation is a useful process to inspect inside a device with a small thermal damage to chip surface.

  • PDF

A Study on Characteristics of Laser Cladding Layer of STS316L (STS316L 분말의 레이저 클래딩층 특성에 관한 연구)

  • Hong, SungMoo;Oh, JaeYong;Kim, DongSeob;Chang, SeungCheol;Shin, BoSung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.53-56
    • /
    • 2017
  • Laser cladding is a technique for forming beads by melt-sintering with a laser while directly feeding metal powder onto the base material through nozzles. This technique, which is applied in laser surface treatment technology, is useful for repairing broken or worn parts by allowing selective formation of the surface layer of the base metal material. In this paper, laser cladding process was performed on STS316L powder using high power continuous wave laser with IR wavelength and the cladding characteristics according to process conditions were experimentally analyzed.