• 제목/요약/키워드: Laser Induced Scattering

검색결과 71건 처리시간 0.023초

Thermo-Recording for The Composite System of (Disk-Like Molecules and Liquid Crystals)

  • Jeong, Hwan-Kyeong
    • 한국응용과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.245-249
    • /
    • 2002
  • A (disk-like liquid crystal (DLC) monomer/liquid crystals(LCs)/chiral dopant/dichroic dye) composite was irradiated with ultraviolet (UV) light. The (DLC network/LCs/chiral dopant/dichroic dye) was formed in the homeotropically oriented smectic A(SA) phase by the surface orientation treatment and the electric field. A focal-conic texture exhibiting strong light scattering appeared in the heat-induced chiral nematic phase(N${\ast}$) of the composite upon heating. Thermo-recording in the composite system has been realized by using a He-Ne laser. The laser irradiation was induced the phase transitions from SA phase to chiral nematic(N${\ast}$) phase in the composite system.

이종연료 층상분사를 적용한 디젤엔진에서 광 계측을 이용한 연소해석 (An Combustion Diagnosis Using Optical Measurement in D. I Diesel Engine with Dual Fuel Stratified Injection System)

  • 안현찬;강병무;염정국;정성식;하종률
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.31-37
    • /
    • 2002
  • In previous study, diesel-methanol stratified injection system is manufactured and applied to a D.I. diesel engine in order to realize combustion improvement using methanol, which is oxygenated fuel with large latent heat. We know that NOx and soot is reduced by stratified injection of diesel fuel-methanol. Therefore, in the present study, combustion diagnosis using optical measurement is tried to make clear effect of methanol on simultaneous reduction of NOx and soot. Two-color method is used to measure flame temperature and KL value, which is approximately proportional to the soot consentration along the optical path. Laser induced scattering method was used to measure distribution of soot at two dimensional area. Also, it is compared exhaust characteristics of NOx and soot with results of optical measurement.

  • PDF

2차원 시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 입자 크기 측정 (Soot Primary Particle Size Measurement in a Ethylene Diffusion Flame Using Time-Resolved Laser-Induced Incandescence)

  • 손무강;문건필;김규보;이종호;정동수;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1140-1145
    • /
    • 2004
  • Laser-induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles in flame environments. This technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application. The evaluation of the temporal decay of the laser-induced incandescence (LII) signal from soot particles is introduced as a technique to obtain two-dimensional distributions of particle sizes and is applied to a laminar diffusion flame. This novel approach to soot sizing exhibits several theoretical and technical advantages compared with the established combination of elastic scattering and LII, especially as it yields absolute sizes of primary particles without requiring calibration. With this technique a spatially resolved 2-D measurement of soot primary particle sizes is feasible in a combination process form the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size.

  • PDF

레이저를 이용한 마이크로/나노 알루미늄 입자 생성과 점화 (Generation and ignition of micro/nano - aluminum particles using laser)

  • 이경철;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.429-434
    • /
    • 2012
  • 금속 연료로 사용되는 마이크로/나노 알루미늄 입자를 산화피막에 의한 점화 지연을 최소화 하는 점화 방법을 제시 하였다. 알루미늄 입자를 생성시킴과 동시에 가열하여 입자가 생성된 직후 산소와 접촉시 격렬한 산화 반응을 유도하여 점화를 시키는 방법이다. 1064 nm 파장의 Nd:YAG 펄스 레이저를 이용한 레이저 삭마(laser ablation)를 알루미늄 시편에 발생시켜 입자를 생성하였으며, 산란 기법(scattering method)을 이용하여 입자를 가시화하여 생성을 확인하였다. 10.6 ${\mu}m$ 파장의 $CO_2$ 연속 레이저를 사용하여 알루미늄 시편을 가열하고 생성된 입자의 점화 열원으로 사용하여 알루미늄 입자가 점화되고 연소되어 이동하는 궤적을 확인하였다.

  • PDF

파장 가변형 KrF 에시머 레이저를 이용한 층류 비예혼합 수소 화염에서의 2차원적 온도 및 농도 계측 (Planar Imaging of Temperature and Concentration of a Laminar Nonpremixed $H_2$/$N_2$flame Using a Tunable KrF Excimer Laser)

  • 김군홍;진성호;김용모;박경석;김세원;김경수
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1580-1587
    • /
    • 2000
  • Rayleigh scattering and laser induced predissociative fluorescence are employed for capturing two-dimensional images of temperature and species concentration in a laminar nonpremixed flame of a diluted hydrogen jet. Rayleigh scattering cross-sections are experimentally obtained ar 248nm. Dispersed LIPF spectra of OH and O$_2$ are also measured in a flame in order to confirm the excitation of single vibronic state of OH and O$_2$ .OH and O$_2$ are excited on the P$_1$(8) line of the A $^2\Sigma ^+(v^`=3) - X^2\pi (V^"=0)$ band and R(17) line of the Schumann-Runge band B $^3\Sigma _u^-(v^`=0) - X ^3\Sigma _g^-(v^"=6)$, respectively. Fluorescence spectra of OH and Hot O$_2$ are captured and two-dimensional images of the hydrogen flame field are successfully visualized.

The 2D Measurement of Soot Diameter and Number Density in a Diesel Engine Using Laser Induced Methods

  • Lee, Myung-Jun;Yeom, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1311-1318
    • /
    • 2001
  • It is necessary to diagnose accurately the characteristics of soot formation and oxidation in a diesel engine. Whereas past measurement techniques for soot concentration give limited information for soot, laser-based two-dimensional imaging diagnostics have a potential to provide temporally and spatially superior resolved measurements of the soot distribution. The technique using laser sheet beam has been applied to an optically accessible diesel engine for the quantitative measurement of soot. The results provided the information for reduction of soot from the diesel engine. Both LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) techniques were used simultaneously in this study. The images of LIS and LII showed the quantitative distribution of the soot concentration in the diesel engine. In this study, several results were obtained by the simultaneous measurements of LIS and LII technique. The diameter and number density of soot in combustion chamber of the test engine were obtained from ATDC 20 degree to 110 degree. The soot diameter increased about 37% between ATDC 20 degree and 110 degree. The number density of soot, however, decreased significantly between ATDC 40 degree and 70 degree.

  • PDF

레이저 시트빔을 이용한 디젤엔진의 Soot 농도 계측 (Soot Concentration Measurement in Diesel Engine Using Laser Sheet Beam)

  • 이중순
    • 한국분무공학회지
    • /
    • 제5권1호
    • /
    • pp.23-29
    • /
    • 2000
  • Recently the laser sheet technique has been developed to improve our limited understanding of the in-cylinder diesel combustion. The technique is capable of high temporal and spatial resolution, so that it is proved to be an adequate combustion diagnostics to find out exhaust emission formation. The optical signals of LIS(Laser Induced Scattering) and LII(Laser Induced Incandescence) images show informations for soot concentration within the optically accessible diesel engine. The LIS and LII signal images of soot concentration provide new insight into where and when soot occurs in a diesel engine.

  • PDF

LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구 (Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine)

  • 오승묵;박승재;허환일;강건용;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

동시계측에 의한 난류 미분탄 화염의 순간구조에 관한 연구 (Study on Instantaneous Structure of Turbulent Pulverized Coal Flame by Simultaneous Measurement)

  • 황승민
    • 한국환경과학회지
    • /
    • 제27권5호
    • /
    • pp.309-317
    • /
    • 2018
  • In this study, a laser sheet technique and PLIF (Planar laser-induced fluorescence) are applied to a laboratory-scale pulverized coal burner of the open type, and the spatial relationship of the pulverized coal particle zone and the combustion reaction zone is examined by simultaneous measurement of Mie scattering and OH-LIF images. It is found that this technique can be used to investigate the spatial relationship of the combustion reaction zone and pulverized-coal particles in turbulent pulverized-coal flames without disturbing the combustion reaction field. In the upstream region, the combustion reaction occurs only in the periphery of the clusters where high-temperature burned gas of the methane pilot flame is entrained and oxygen supply is sufficient. In the downstream region, however, combustion reaction can be seen also within clusters of pulverized-coal particles, since the temperature of pulverized-coal particles rises, and the mixing with emitted volatile matter and ambient air is promoted.

무질서하게 분포된 산란매질에서 빔전파의 확산에 관한 검증 (Verification on Diffusion of Beam Propagation in Randomly Distributed Scattering Medium)

  • 김기준;이후설
    • 한국응용과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.354-361
    • /
    • 2007
  • The distribution of light in a randomly scattering medium can represent problems found in many area. Particularly, in the clinical application of lasers for Photodynamic therapy(PDT) or in the fluorescence spectroscopy for biological tissue, turbidity plays a very important role. The influences of fluorophor, scatterer, and absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength. The molecular properties have been studied by laser induced fluorescence spectroscopy in scattering medium as tissue. It has been found that the effects of optical properties in scattering media could be investigated by the optical $parameters({\mu}_s$, ${\mu}_a$ ,${\mu}t)$. Experimental and Monte Carlo simulation method for modelling light transport in tissue was applied. The experimental results using a randomly distributed scattering medium were discussed and compared with those obtained through Monte Carlo simulation. It'll be also important in designing the best model for oil chemistry, medicine and application of medical engineering.