• Title/Summary/Keyword: Laser Heat Source

Search Result 155, Processing Time 0.041 seconds

A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석)

  • Ahn, Dong-Gyu;Kim, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

Finite Element Analysis for Breaking of Glass Using Laser (레이저를 이용한 유리절단의 유한요소해석)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Nam, Gi-Jeong;Lee, Jae-Hoon;Suh, Jeong
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • Glass is one of brittle materials. Generally, brittle material is weak for tensile stress but strong for compression stress. Laser breaking of glass used this brittle characteristics. Laser breaking of glass was simulated to optimize breaking condition by using commercial FEM code MARC which is applicable to thermo-mechanical coupling analysis. Various shapes of heat sources were applied to the analysis and the distance between heating and cooling source were varied for each simulation. The shapes of heat sources were circle, single and double ellipse and the distance was varied from 0mm to 30mm. Moving heat sources were designed on the basis of experimental condition. As a result, double elliptic shape of heat source was the most suitable among them in laser breaking of glass. And it should be useful to determine optimal condition of laser breaking for glass.

  • PDF

Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel (소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

A study on the prediction of micro-deformation in laser welding of small structure (소형구조물의 레이저-용접시 미세 변형 예측에 관한 연구)

  • 장원석;나석주
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.170-172
    • /
    • 2000
  • In this research, newly proposed heat source equations were calculated to predict micro distortion of small structure in laser welding and compared with experimental results which were measured using laser speckle metrology. A finite element code, ABAQUS is used for the heat transfer analysis with a three-dimensional plane assumption. The results suggest that weld distortion is varied according to the heat source of the. laser beam.

  • PDF

A Study on Thermal Analysis of Dual Beam Laser Welding of Thin Metal Sheet (박판의 이중 빔 레이저 용접에서 열유동 해석에 관한 연구)

  • 김재웅
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.99-108
    • /
    • 1997
  • Analytical model for the temperature distribution and the cooling rate of weld in dual beam laser welding is presented for investigating the possibility of controling the cooling rate. The model is based on the solutions to the problem of heat flow due to the distributed and line heat sources for preheating and welding respectively in plates with finite thickness. The effects of beam power, beam distribution parameter, interbeam distance, and welding speed on the resulting temperature distribution and cooling rate are presented. The cooling rates of dual beam laser weld at the weld centerline under the investigated conditions are reduced to as one third of those of welds which were produced by single beam laser. And it appeared that the cooling rate of dual beam laser weld is strongly dependent on the process parameters of preheating laser beam power and welding speed.

  • PDF

An Analytical Study on the Preheating Effect of Flat Workpiece in Thermally Assisted Machining by Multi Heat Sources (다중열원 보조가공을 위한 평판 시편의 예열 효과에 관한 해석적 연구)

  • Moon, Sung-Ho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.629-634
    • /
    • 2016
  • Laser-assisted machining (LAM) is one of the most effective methods of processing difficult-to-cut materials, such as titanium alloys and various ceramics. However, it is associated with problems such as the inability of the laser heat source to generate an appropriate preheating temperature. To solve the problem, thermally assisted machining with multiple heat sources is proposed. In this study, thermal analysis of multiple heat sources by laser and arc is performed according to power, heat source size, and leading heat source position. Then, the results are analyzed according to each condition. The results of this analysis can be used as a reference to predict preheating temperature in thermally assisted machining with multiple heat sources.

Finite element analysis for prediction of bead shape of Nd:YAG laser butt welding (Nd:YAG 레이저 맞대기 용접의 비드형상 예측에 관한 유한요소해석)

  • Kim, Kwan-Woo;Nam, Gi-Jeong;Lee, Jae-Hoon;Suh, Jeong;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Nd:YAG pulse laser welding of stainless steel plate was simulated to find welding condition by using commercial finite element code MARC. Due to geometric symmetry, a half model of AISI 304 stainless steel plate was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat, mass density and latent heat were given as a function of temperature. As results, Three dimensional heat source model for pulse laser beam conditions of butt welding has been designed by the comparison between the finite element analysis results and experimental data on AISI 304 stainless steel plate. Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.

Study on Temperature Effect of Difficulty-to-Cut Material in Laser Heat Treatment Process (레이저 열원을 이용한 난삭재 열처리 공정의 온도 효과에 관한 연구)

  • Kim, Dong Hong;Jung, Dong Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.29-33
    • /
    • 2014
  • Recently, Difficult-to-cut materials are used in many manufacturing industry. But the difficult-to-cut materials are difficult-to-cutting process. So difficult to cut material cutting process was used after heat treatment through preheating for easy cutting process. In this study, Inconel 625 was preheating using laser heat source in computer simulation. Laser heat source temperature applied $1290^{\circ}C$ that suitable preheating temperature for Inconel 625. And temperature effects such as temperature distribution for moving heat source studied apply to similar actual process condition. Simulation results for heat treatment effects through temperature distribution verified.

Finite Element Analysis for Prediction of Bead Shape of Nd:YAG Laser Fillet Welding (Nd:YAG 레이저 필렛 용접의 비드형상 예측에 관한 유한요소해석)

  • Kim, Kwan-Woo;Lee, Jae-Roon;Suh, Jeong;Cho, Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.839-846
    • /
    • 2007
  • Nd:YAG pulse laser fillet welding of stainless steel plate was simulated to find welding condition by using commercial finite element code MARC. Full model of AISI 304 stainless steel plate was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat, mass density and latent heat were given as a function of temperature. As results, Three dimensional heat source model for pulse laser beam conditions of fillet welding has been designed by the comparison between the finite element analysis results and experimental data on AISI 304 stainless steel plate. Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.