• Title/Summary/Keyword: Laser Diffraction

Search Result 538, Processing Time 0.025 seconds

Fabrication of Precise Patterns using a Laser Beam Expanding Technique in Nano-Replication Printing (nRP) Process (레이저 빔 단면확대를 이용한 나노 복화(複畵)공정의 패턴 정밀도 향상에 관한 연구)

  • Park Sang Hu;Lim Tae Woo;Yang Dong-Yol;Yi Shin Wook;Kong Hong Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.175-182
    • /
    • 2005
  • A laser beam expanding technique is employed to fabricate precise nano-patterns in a nano-replication printing (nRP) process. In the nRP process, some patterns can be fabricated in the range of several microns inside on a polymerizable resin by using a volume-pixel (voxel) matrix that is transformed from a two-tone bitmap figure file. The liquid monomers are polymerized by means of a two-photon-absorption (TPA) phenomenon that is induced by a femtosecond (fs)-pulse laser. The yokels are generated consecutively to merge into adjoining yokels in the process of fabricating a pattern. The resolution of a fabricated pattern can be obtained under the diffraction limit of a laser beam by the two-photon absorbed polymerization (TPP). In this work, a beam-expanding technique has been applied to enlarge a working area and to fabricate precise patterns. Through this work, a working area is expanded by the technique as much as 2.5 times compared with a case of without a beam expanding technique, and precision of outside patterns is improved.

Precipitation of Eu3+ - Yb3+ Codoped ZnAl2O4 Nanocrystals on Glass Surface by CO2 Laser Irradiation

  • Bae, Chang-hyuck;Lim, Ki-Soo;Babu, P.
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • We present a novel and simple method to enable spatially selective $ZnAl_2O_4$ nanocrystal formation on the surface of $B_2O_3$-$Al_2O_3$-ZnO-CaO-$K_2O$ glass by employing localized laser heating. Optimized precipitation of glass-ceramics containing nanocrystals doped with $Eu^{3+}$ and $Yb^{3+}$ ions was performed by controlling $CO_2$ laser power and scan speed. Micro-x-ray diffraction and transmission electron microscopy revealed the mean size and morphology of nanocrystals, and energy dispersive x-ray spectroscopy showed the lateral distribution of elements in the imaged area. Laser power and scan speed controled annealing temperature for crystalization in the range of 1.4-1.8 W and 0.01-0.3 mm/s, and changed the size of nanocrystals and distribution of dopant ions. We also report more than 20 times enhanced downshift visible emission under ultraviolet excitation, and 3 times increased upconversion emission from $Eu^{3+}$ ions assisted by efficient sensitizer $Yb^{3+}$ ions in nanocrystals under 980 nm excitation. The confocal microscope revealed the depth profile of $Eu^{3+}$ ions by showing their emission intensity variation.

Numerical Analysis of Working Distance of Square-shaped Beam Homogenizer for Laser Shock Peening

  • Kim, Taeshin;Hwang, Seungjin;Hong, Kyung Hee;Yu, Tae Jun
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.221-227
    • /
    • 2017
  • To apply a square-shaped beam homogenizer to laser shock peening, it should be designed with a long working distance and by considering metal targets with various shapes and textures. For long working distances, a square-shaped beam homogenizer with a long depth of focus is required. In the range of working distance, the laser beam is required to have not only high efficiency but high uniformity, in other words, a good peening quality is guaranteed. In this study, we defined this range as the working distance for laser shock peening. We have simulated the effect of some parameters on the working distance. The parameters include the focal length of the condenser lens, pitch size of the array lens, and plasma threshold of the metal. The simulation was performed through numerical analysis by considering the diffraction effect.

Metal-insulator Transition in $(Sr_{0.75},\;La_{0.25})TiO_3$ Ultra-thin Films

  • Choi, Jae-Du;Choi, Eui-Young;Lee, Yun-Sang;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.2-19.2
    • /
    • 2011
  • The $(Sr_{0.75},\;La_{0.25})TiO_3$ (SLTO) ultra-thin films with various thicknesses have been grown on Ti-O terminated $SrTiO_3$(100) substrate using Laser-Molecular Beam Epitaxy (Laser MBE). By monitoring the in-situ specular spot intensity oscillation of reflection high energy electron diffraction (RHEED), we controlled the layer-by-layer film growth. The film structure and topography were verified by atomic force microscopy (AFM) and high resolution thin film x-ray diffraction by the synchrotron x-ray radiation. We have also investigated the electronic band structure using x-ray absorption spectroscopy (XAS). The ultra thin SLTO film exhibits thickness driven metal-insulator transition around 8 unit cell thickness when the film thickness progressively reduced to 2 unit cell. The SLTO thin films with an insulating character showed band splitting in Ti $L_3-L_2$ edge XAS spectrum which is attributed to Ti 3d band splitting. This narrow d band splitting could drive the metal-insulator transition along with Anderson Localization. In optical conductivity, we have found the spectral weight transfer from coherent part to incoherent part when the film thickness was reduced. This result indicates the possibility of enhanced electron correlation in ultra thin films.

  • PDF

The growth and structural analysis of $BaTiO_3$/Sr$TiO_3$ oxide artificial lattice by Laser Molecular Beam Epitaxy system combined Reflection High Energy Electron Diffraction (Laser Molecular Beam Epitaxy system에서 Reflection High Energy Electron Diffraction을 통한 $BaTiO_3$/Sr$TiO_3$ 산화물 인공격자의 성장과 구조적 분석)

  • 이창훈;김이준;전성진;김주호;최택집;이재찬
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.53-53
    • /
    • 2003
  • 최근 높은 유전상수와 잔류 분극, 비선형 등의 다양한 유전적인 특성으로 인해 산화물 박막이 많은 관심을 가지고 연구되어지고 있다. 많은 산화물 박막중에서도 BaTiO3/SiTiO3 (BTO/STO) 인 공격자는 STO나 BTO 또는 (Ba$_{0.5}$ Sr$_{0.5}$)TiO$_3$ (BST)등의 고용체들과 비교했을 때 아주 뛰어난 유전적인 성질을 나타내고 있다. 특히 1000 $\AA$ 이하의 낮은 두께에서도 높은 유전상수와 비선형도를 가진다는 사실이 선행된 실험에서 밝혀졌는데 BTO와 STO를 각각 2 unit cell (8 $\AA$)로 고정 시킨 후 다층 박막으로 제작했을 때 가장 큰 유전 특성을 얻을 수 있었다. 이런 뛰어난 유전적인 성질은 BTO와 STO 각 층의 두께와 주기 변화에 따른 박막 내부의 인위적인 stress와 그에 따른 격자 변형과 아주 밀접한 관계가 있음으로 생각되어진다. 따라서 이런 두 계면에서의 stress와 격자 변형을 더욱 정착하게 분석하기 위해서는 각 층을 원자 단위로 정확하게 두께 제어를 하고 증착되어지는 과정중에서의 growth mode를 확인하는 것이 무엇보다 중요한 일이다.

  • PDF

An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer (회전컵 무화기의 미립화 특성에 관한 실험적 연구)

  • Jin, S.B.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

Comparison of Dynamic Behavior of Droplet Mean Diameter with 2holes-2sprays and 4holes-2sprays Types Injector for Gasoline Engine (가솔린 엔진용 2홀 2분류와 4홀 2분류 타입 인젝터의 액적 평균 직경의 동적 거동 비교)

  • Kim, Beom-Jun;Cho, Dae-Jin;Yoon, Suck-Ju
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The influence of fuel spray characteristics on engine performance has been known as one of the major concerns to Improve fuel economy and to reduce exhaust emissions. In general, the UBHC(Unburned Hydrocarbon) emission could be reduced by decreasing the droplet size of the fuel sprays. In PFI (Port Fuel Injection) gasoline engines, the mixture of air and fuel would not be uniform under a certain condition, because the breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve sheat. In this study, were investigated the transient spray characteristics and dynamic behavior of droplets from 2holes-2sprays and 4holes-2sprays type injectors used in PFI gasoline engine. Mean droplet size and optical concentration were measured by LDPA (Laser Diffraction Particle size Analyzer). The variation of droplet mean diameter and optical concentration were measured for understanding the behavior of unsteady spray.

  • PDF