• Title/Summary/Keyword: Laser welding

Search Result 1,223, Processing Time 0.021 seconds

Study on CAD/CAM Interfacing for Robot based Laser Welding (로봇 레이저용접을 위한 캐드캠 인터페이싱에 관한 연구)

  • Gang, Hui-Sin;Seo, Jeong;Kim, Jeong-O;Park, Gyeong-Taek;Jo, Taek-Dong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.67-69
    • /
    • 2007
  • Laser welding technology for automobile body is studied. Laser system, robot and seam tracking system are used for 3D laser welding system. The laser system is used 4kW Nd:YAG laser(HL4006D) of Trumpf and the robot system is used IRB6400R of ABB. The seam tracking system is SMRT-20LS of ServoRobot. The welding joints of steel plate are butt and lap joint. The 3 dimensional laser welding for non-linear pipe welding line is performed.

  • PDF

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

A Study on Correlationship between the Induced Plasma and Emission Signals for In-process Monitoring in Stainless Steel Welding of Fiber Laser (I) - Properties Changes of the Measured Signals in a Thin Plate Welding - (파이버 레이저의 스테인리스강 용접시 인프로세스 모니터링을 위한 유기 플라즈마와 방사신호간의 상관성 연구(I) - 박판 용접시 측정신호의 특성 변화 -)

  • Lee, Chang-Je;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.64-69
    • /
    • 2014
  • The applications by using fiber laser have increased recently. However, due to high beam quality of fiber laser, it is inappropriate to apply the existing laser welding monitoring technology to the fiber laser welding as it is. On this study, thus, we analyzed emission signal with RMS and FFT for the in-process monitoring during fiber laser welding. 12mm-thick 304L stainless steel sheet was used in fiber laser welding and the result showed as follows: The intensity changes in RMS did not clarify the distinction between full penetration and partial penetration. However, as welding speed increases, specific frequency also increases in regards of frequency analysis by using FFT.

Study on the Process Parameters for Laser Welding of Coaxial Circular Pipe Inner Flange (동축 파이프 이음부의 레이저용접 공정변수에 관한 연구)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.14-17
    • /
    • 2009
  • The laser welding was performed for the flange joint of two overlapped coaxial circular pipes which serve as the inlet and connector pipes of STS 316L. The laser welding test finally resulted in a good penetration depth of 1.8 to 2.0 mm. On the way to get the good welding quality, two important parameters were found to be optimized. One is the focal positioning which is the offset of the laser beam focus to the exact welding seam line, which is more critical in the inner flange laser welding. When the beam spot size was deviated more than $200\;{\mu}m$ from the seam line, welding of two pipes is failed. The other is a gap size since a certain amount of gap is inevitable due to fabrication tolerance, or artificial allowances for smooth insertion of a pipe. However, it is required to restrict the gap allowance within 0.2mm to avoid undesirable undercut on a welding bead.

  • PDF

Process Parameters of Butt Welding of SM45C using a Continuous Wave Nd:YAG Laser Beam (연속파형 Nd:YAG 레이저를 이용한 SM45C 맞대기 용접의 공정 변수)

  • 유영태;노경보;오용석;김종신;임기건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.44-55
    • /
    • 2003
  • The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. The major process parameters studied in the present laser welding experiment were position of focus, travel speed and laser power. Optical microscope and SEM were used to investigate the microstructures of the welded zone. The experimental results showed that penetration depth of the welding process increases with laser power. Both the microstructural investigation and the theoretical calculations indicated that materials undergoes a very high heating and cooling cycle during welding process. It was also found that the austenite nucleation takes place at the initial stage and the completion temperature of austenite transformation is much higher than in the case of the arc welding.

Laser weldability and mechanical behavior of hot rolled steels for hydroforming applications (하이드로포밍용 열연강재의 레이저 용접성 및 기계적 특성)

  • 이원범;이종봉
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.84-86
    • /
    • 2003
  • The laser welding and its analysis of thin-sheet carbon steels were carried out with high power CO$_2$1aser. Bead on plate welding of thin sheet was examined to investigate the effect of weld variables of laser welding, and to obtain optimum welding condition. Butt-welding was also carried out to show the effect of gap on the laser weldability of thin sheet. At high welding speed, the partial penetration was obtained by low heat input. Otherwise, porosity was formed in the bead at low weld speed because of too many heat input. The maximum gap tolerance on laser welding was observed to be about 0.2mm. This gap size has good relationship with beam size of laser spot(about 0.3mm). The formability of welded sheet was about 80% value of base metal and the gap size has not affected on the formability, although weld quality is dependent on the gap size.

  • PDF

The characteristics of bead welding on steel with process parameter during the laser-arc hybrid welding(I) - Effect of flow rate of shield gas and distance between laser and arc - (강의 레이저-아크 하이브리드 용접시 공정변수에 따른 비드용접특성 (I) - 보호가스 유량 및 레이저 아크간 거리의 영향 -)

  • Kim, Jong-Do;Myung, Gi-Hoon;Song, Moo-Keun;Oh, Jae-Hwan;Suh, Jeong
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Recently many studies for improvement of productivity and automation of process are in progress, and among others, laser-arc hybrid welding that combined laser and arc has attracted much attention. Since parameters by interactions as well as the parameters of each heat source should be considered, There are a lot of hardship in actual application, even though many researches have been done so far. Therefore in this study, bead welding was done to examine the effects of the flow rate of shield gas and the distance between laser and arc during laser-arc hybrid welding. As for hybrid heat source, disk laser and MIG were used. As experiment result, sound bead and weld with no defect were formed when the flow rate of front and rear shield gas were respectively 20 l/min and 15 l/min, and deep penetration was done at DLA=3 mm.

LASER WELDING APPLICATION IN CAR BODY MANUFACTURING

  • Shin, Hyun-Oh;Chang, In-Sung;Jung, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.181-186
    • /
    • 2002
  • Laser welding application for car body manufacturing has many advantages in the stiffness and the lightness of vehicle, the productivity of assembly line, and the degree of freedom in design. This presentation will express the innovation of car body manufacturing including parameter optimization, process modeling, and system integration. In this application the investment for systems was cut down dramatically by real time switching over the laser path between two welding stations. Points of technical discussion are as follows: optimization of parameters such as laser power, robot speed and trajectory, compact and useful design of jig & fixture to assure welding quality for 3 sheet-layer zinc-coated steel, system integration between 4kW Nd:YAG laser device and the other systems, on-line real time welding quality monitoring system, perfect safety standards for high power laser, minimization of consumption costs such as arc lamp, protective glass for optic, etc. Laser welding has found a place on Hyundai's production plant in conjunction with the startup of mass production of new sports car, and this production system is the result of a collaboration of its engineers. Outer side sheets are joined to inner side sheets by 122 stitch welds totally. And the length is about 2.4meter.

  • PDF

Visualization of weld plume using high-speed holography (고속 홀로그래피에 의한 용접 플룸 거동의 가시화)

  • 백성훈;박승규;김민석;정진만;김철중
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • The real-time holographic interferometer with digital high-speed camera is applied to the experimental study of laser induced plasma/plume in pulsed Nd:YAG laser welding. A pulsed Nd:YAG laser with 1.2 kW average power is applied to generate laser induced plume. The recording speed of the high-speed camera is 3,000 f/s. The high speed photographs of weld plume without another visualization method, are compared with the visualization photographs with holographic interferometer. The radiation intensity from the laser induced plume is recorded by the high speed photographs, which fluctuated during laser radiation and disappeared after laser end. The density distribution of the plume is recorded by the holographic visualization method. The experimental results show the process of generation of the laser induced plasma/plume, and give the feasibility of quantitative measurement of laser induced plume in laser welding.

  • PDF

A Study on Processing of Monolithic Rack Housing for Modular Steering Gear[I] - The Weldability of SAE1020 Steel by Different Heat Sources - (Steering Gear 모듈화를 위한 일체형 Rack Housing의 공정에 관한 연구[I] - 열원에 따른 SAE1020강의 용접특성 -)

  • Kim, Jong-Do;Lee, Chang-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.306-314
    • /
    • 2008
  • General metal welding occurs distortion. Also, reducing distortion is required much cost. Therefore, the purpose of this study is optimization of welding conditions to reduce distortion in welding of monolithic rack housing for modular steering gear. Firstly, heat source for welding was chosen arc and laser. Secondly, it investigated optimizing welding conditions in bead welding by arc and laser heat source, and welding conditions in fillet welding was optimized with welding shapes. Finally, it was measured temperature distribution of welds by infrared camera and angle distortion in fillet welding. As a result, laser welding was superior to arc welding on distortion.