• Title/Summary/Keyword: Laser 열처리

Search Result 221, Processing Time 0.031 seconds

Heat treatment characteristics of medium carbon steel by CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강의 열처리특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.438-443
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power CO2 lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

Characterization of Surface treatment for Mold materials using optical system of laser heat treatment (레이저 열처리 광학계를 이용한 금형소재의 표면 열처리 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Shin, Hyung-Heon;Ro, Kyoung-Bo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1542-1547
    • /
    • 2007
  • Laser surface treatment technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface treatment for the case of SKD61 steel and SCM4 steel. From the results of the experiments, it has been shown that the maximum average hardness is approximatly 700${\sim}$780 Hv when the power, focal position and the travel of laser are 1,095 W, 0mm and 0.3 m/min, respectively. In samples treated with lower scanning speeds, some small carbide particles appear in the interdendritic regions. This region contains fine martensite and carbide in proportions which depend on the local thermal cycle.

  • PDF

A study on the hard surfacing Characteristics of SM45C by using Diode laser (다이오드 레이저를 이용한 SM45C의 표면경화 특성에 관한 연구)

  • Lim, Byung-Chul;Lee, Hong-Sub;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1620-1625
    • /
    • 2015
  • In this study, a variety of industrial gears, shafts, chains, rollers, mold, etc. are widely used inautomotive steel carbon steel for machine structural SM45C typical material used for the experiments. In order to cure the surface of the test piece after the rough grinding and fine grinding was performed in order polishing. Perform the surface hardening of SM45C lacal area by using a diode laser. The output of the laser diode and the feed rate to the process variable. Micro-hardness testing, microstructure testing, scanning electron microscope testing(SEM), the heat input to the analysis. After analyzing the experiment to compare the mechanical properties of the material. When using a diode laser to assess the soundness of the surface hardening. Accordingly, the process for deriving the optimum demonstrate the feasibility.

Metallic pattern Heat treatment by means of CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 금형열처리)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak;Ro, Kyoung-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1898-1904
    • /
    • 2003
  • Laser heat treatment is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_{2}$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of matrensitic structure. In this investigation, the microstructrual features occurring in Nd:YAG laser hardening SM45C and $STD_{11}$ steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimisation of the processing parameters for maximum hardened depth of SM45C and $STD_{11}$ steel specimens of 10mm thickness by using CW Nd:YAG laser.

  • PDF

Transformation Hardening of High Power Laser (고출력 레이저에 의한 표면 경화)

  • Kim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 1995
  • Heat flow equation and FEM have been used to calculate the hardening section of material in laser transformation hardening. SCM440 used as the diesel engine piston of vessel has been hardened by a $CO_2$ laser with the wavelength of $10.6{\mu}m$. The specimens were inclined from 0 to 70 degree to investigate the characteristics of laser hardening. The geometrical factor of heat flow equation affects the size of hardening area. The case width decreased with increasing travel speed and the case width increased with increasing inclined angle. Maximum case depth was achieved about 1.0mm and maximum hardness of laser hardened area was of 2.8 times than that of base metal. Experimental data show good agreement with the theoretical calculations for given laser hardening conditions.

  • PDF