• Title/Summary/Keyword: Laser/electric hybrid propulsion

Search Result 2, Processing Time 0.015 seconds

Characterization of a Micro-Laser-Plasma Electrostatic-Acceleration Hybrid-Thruster

  • Akira Igari;Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.271-277
    • /
    • 2004
  • As one of the concepts of the laser/electric hybrid propulsion system, a feasibility study on possibilities of electrostatic acceleration of a laser ablation plasma induced from a solid target was conducted. Energy distributions of accelerated ions were measured by a Faraday cup. A time-of-flight measurement was also conducted for ion velocity measurement. It was found that an average speed of ions from a pure laser ablation in this case was about 20 km/sec for pulse energy of 40 $\mu$J/pulse with pulse width of 250 psec. On the other hand, through an electrostatic field with a + I ,000 V electrode, the speed could be accelerated up to 40 km/sec. It was shown that the electrode with positive potential was more effective than that with negative potential for positive-ion acceleration in laser induced plasma, or pulsed plasma, in which ions were induced with the Coulomb explosion following electrons. In addition, the ion-acceleration or deceleration strongly depended on conditions of pairs of inner diameter and electrodes gap.

  • PDF

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF