• Title/Summary/Keyword: Large-surfaces

Search Result 653, Processing Time 0.025 seconds

FINE STRUCTURES OF PHYSIOLOGIC AND PATHOLOGIC ROOT RESORPTION SURFACES OF DECIDUOUS TEETH (생리적 및 염증성 유치 치근 흡수면의 미세구조)

  • Park, Yoon-Hee;Sohn, Heung-Kyu;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.4
    • /
    • pp.524-534
    • /
    • 2000
  • Deciduous teeth can be extracted for two reasons, one due to the physiologic resorption and the other by the inflammation at the apex after traumatic injury. Physiologic resorption may be different from pathologic resorption in timing and mechanism. Therefore we resumed the different features of physiologic and pathologic resorption root surfaces. Many previous studies showed micromorphology of resorbed surface of roots of deciduous teeth. But, few studies compared physiological and pathological root resorption surfaces. In this study, we carefully observed microscopic morphologies of those two different root surfaces by scanning electron microscope and histologic features by light microscope. The resultant differences between physiologic and pathologic resorption surfaces of deciduous teeth were as follows: 1. The morphology of pathologic resorption lacunae due to inflammation varied in size and shape with irregular boundaries compared with the physiologic areas from scanning electron microscope observations. 2. From light microscope observations, several large resorption fossae containing numerous resorption lacunae were found, whereas the resorption lacunae were irregular in shape with pathologic resorption surface. 3. Numerous multinucleated giant cells were closely attached to the physiologic resorption lacunae, whereas several kinds of mesenchymal cells with numerous inflammatory cells were found in the areas adjacent to the pathologic resorption surface. 4. Light microscope findings showed that compensating cementum formation took place along some of the areas of inflammatory dentinal resorption. In conclusion, several morphological differences were present between physiologic and pathologic root resorption surfaces of human deciduous teeth. The future studies should include cytochemistry to clarify the cellular roles in resorption process observations of pulpal surfaces of coronal and radicular dentin to and the changes that occur in each phase of human deciduous tooth resorption.

  • PDF

Field Study on Wireless Remote Sensing for Stability Monitoring of Large Circular Steel Pipe for Marine Bridge Foundation (해상 교량기초용 대형 원형강관 가설공법의 무선 원격 안정성 모니터링을 위한 현장실험)

  • Park, Min-Chul;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.71-81
    • /
    • 2020
  • The large circular steel pipe for a marine bridge foundation has been developed as a construction method capable of performing the role of the working platform and cofferdam. The objective of this study is to demonstrate the wireless remote sensing system for monitoring the stability of the large circular steel pipe during construction and operation through field tests. The artificial seabed ground with an water level of 4 m is constructed for field tests. The large circular steel pipe with a diameter of 5 m and height of 9.5 m is installed into the ground by suction, and the embedded depth is 5 m. The inclinometer and strain gauges are installed on different surfaces of the upper module, and the tilt angle and stress are monitored throughout the entire construction process. As results, tilt angles are measured to be constant during the suction penetration. However, the tilt angle is larger in the x-axis direction. In addition, even when installed on different surfaces, the tilt angle in the same axial direction is measured to be almost the same. The stresses measured by strain gauges increase during suction penetration and decrease during pull-out. Based on measured stresses, it is found that the eccentricity is acting on the large circular steel pipe. This study shows that a wireless remote sensing system built with an inclinometer and strain gauge can be a useful tool for the stability monitoring of the large circular steel pipe.

A New species of Elsholtzia (Lamiaceae): E. byeonsanensis M. Kim (향유속(꿀풀과)의 신종: 변산향유(Elsholtzia byeonsanensis M. Kim))

  • Choi, Changhak;Han, Kyeongsuk;Lee, Jungsim;So, Soonku;Hwang, Yong;Kim, Muyeol
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.3
    • /
    • pp.197-201
    • /
    • 2012
  • A new species, Elsholtzia byeonsanensis M. Kim is named and described from Byeonsan, Jeollabukdo Province, Korea. Molecular data confirmed that this new taxon was distinguished from other congeneric species. Elsholtzia byeonsanensis shares several characteristics (secund spikes, ovate leaves, long corolla length, etc.) with its related species E. splendens, but it is distinct from E. splendens which has a large plant, green stem color, chartaceous leaf textures, non-shiny leaf surfaces, pubescent petioles, pubescent leaf blade surfaces, pubescent bract surface, and open woodland habitats by having a small plant, purple stem color, coriaceous leaf textures, shiny leaf surfaces, glabrous petioles, glabrous leaf blade surfaces, glabrous bract surface, and marine habitats.

A study on the surface modification of artificial lightweight aggregates by using bottom ash from coal power plant (화력발전소 바닥재를 이용한 인공경량골재의 표면개질에 관한 연구)

  • Ryu, Yug-Wang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.208-213
    • /
    • 2009
  • Artificial lightweight aggregates were produced by using bottom ashes and dredged soils from coal power plant. The amount of glassy phases on the aggregate surfaces, specific gravities, absorption rates, and observations of cross-sectional surfaces were compared according to the compositions, sintering temperatures, and the amount of coating. It is concluded that surface modification by 10 % $CaCO_3$ coating on the aggregate surfaces enhances the properties of aggregates as follows: Specific gravities were controlled by depressing formation of large pores in the aggregates. Sticking phenomena among aggregates during the sintering process was drastically decreased by reducing glassy phases on the aggregate surfaces. Pumping problems during the application of ready-mix concretes containing lightweight aggregates having high value of absorption rates could be solved by reducing the absorption rate.

A Study on the Toothbrush-Dentifrice Abrasion of Class V Restroations (치경부 5급 와동 수복의 잇솔질 마모에 관한 연구)

  • Hwang, Su-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • The objective of this study was to evaluate the toothbrush abrasion characteristics of class V restorations. Thirty extracted human premolars, which were collected from oral surgery clinics were used. We mounted five teeth in a metal ring mold of 50 mm in diameter and 15 mm in height using chemically cured acrylic resin. Class V cavities were prepared in lingual cervical root surfaces and restored using one of following restorative materials : Dentin Conditioner/Fuji II LC (Group FL), All Bond II/Z-250 (Group ZT), One-up Bond F/Palfigue Estelite (Group PE), F2000 Primer/Adhesive (Group FT), and Prime & Bond 2.1/Dyract AP (Group DR). They were stored under distilled water at $37^{\circ}C$ for seven days. The toothbrush abrasion test was conducted using a wear testing machine of pin-on disk type under a load of 1.5 N for 100,000 cycles. We have examined the bonded interfaces, the changes of surface roughness and color of abraded surfaces. From this experiment, the following results were obtained. 1. The change of surface roughness showed high degree: RMGIC>compomer>composite resin (p<0.05). 2. Because of the protrusion and missing of filler particles, SEM observation of abraded surfaces of RMGIC and compomers revealed the increase of surface roughness due to the selective removal of matrix resin. 3. The color change by toothbrush abrasion was affected in large part by the change of $L^*$ and $b^*$ of resin composites (p<0.05). 4. The color change by toothbrush abrasion was so small to detect by human eyes. 5. SEM observation of abraded surfaces revealed the interface bonding was the best in the FT group.

The Effect of Fluid Shear Stress on Endothelial Cell Adhesiveness to Modified Polyurethane Surfaces

  • Gilson Khang;Lee, Sang-Jin;Lee, Young-Moo;Lee, Jin-Ho;Lee, Hai-Bang q
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.179-185
    • /
    • 2000
  • Generally vascular grafts with a relatively large inner diameter (> 5 mm) have been successfully employed for replacement in the human body. However, the use of small diameter grafts is limited, because these grafts rapidly occlude due to the thrombosis. The ideal blood-contacting surface of a prosthesis would be an endothelial cell (EC) lining, because the confluent monolayer of healthy ECs that culture natural blood vessels represents the ideal nonthrombogenic surface. For vascular graft application, the stable EC adhesion on surface under How conditions is very important. In this study, the adhesive strength of ECs attached on polymer surfaces coated with collagen type IV (Col IV), fibronectin (Fn), laminin (Ln), and treated with corona was investigated onto polyurethane (PU) films. The EC-attached PU surfaces were mounted on parallel-plate flow chambers in a How system prepared for cell adhesiveness test. Three different shear stresses (100, 150, and 200 dyne/㎠) were applied to the How chambers and each shear stress was maintained for 120 min to investigate the effect of shear stress and surface treatment condition on the EC adhesion strength. It was observed that the EC adhesion strength on the surface-modified PU films was in the order of Ln≡Fn > Col IV > corona 》 control. More than 70% of the adhered cells were remained on surface-modified PU surface after applying the shear stress,200 dyne/㎠ for 2 hrs, whereas the cells were completely detached on the control PU surface within 10 min after applying the same shear stress. It seems that the type of adsorbed proteins and hydrophilicitv onto the PU surfaces play very important roles for cell adhesion strength.

  • PDF

Microscopic Examination of Fracture Particles on the Surface of Ir-192 Sealed Source and Ultrasonic Cleaning (Ir-192 밀봉선원의 표면오염 방지)

  • Kuk, Il Hiun;Park, Chun Deuk;Koo, Ja Ho
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.91-102
    • /
    • 2015
  • The iridium disc, generally used in industrial radiography, is examined to find the fracture morphology and fine particles remaining on the shear blank surface. Randomly selected 1,200 discs were observed under a scanning electron microscope tilted more than $45^{\circ}$. Fracture surfaces are classified into three groups: (1) surface fall-out, (2) fracture on the edge and (3) multi-step brittle fracture, which shows the mutual relationship between the fracture morphology and remaining particles. Fracture particles were removed by cleaning the discs in a ultrasonic bath with acetone and collected at the bottom. Removed number of the particles were counted for each different group of fracture surfaces. Followings are conclusions: (1) About 80.5% of discs (966/1,200), have sound plastic shear surfaces with particles remained. (2) About 2% discs accompany surface fall-out's having large particles tens of ${\mu}m$, which is stable not to be pulled out even after the considerably long time of ultrasonic cleaning. (3) About 5% discs contain the fractures on the edge and the particles are removed thoroughly within 30 minutes. (4) 234 discs out of 1,200 discs have multi-step fracture surfaces whose particles never removed in a short period of time but come out very slowly. Such a disc having multiple-step fracture is attributed to the promate cause to the 'leaker'. It is noted here that the discs having mutiple-step fractures should be treated separately with special care, and it is need to study how to treat them.

Evaluation of Material Durability by Identifying the Relationship between Contact Angle after Wear and Self-cleaning Effect Using Rolling Wear Tester (구름 마모시험 장비(Rolling wear tester)를 이용한 마모 후의 접촉각과 자가세정 효과와의 관계 규명을 통한 재료 내구성 평가)

  • Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.256-261
    • /
    • 2023
  • This study is conducted to evaluate the durability of superhydrophobic surfaces, with a focus on two aspects: contact angle measurement and self-cleaning-performance analysis. Superhydrophobic copper and aluminum surfaces are fabricated using the immersion method and subjected to a rolling wear test, in which a 2 kg weight is placed on a rolling tester, under loaded conditions. To evaluate their durability, the contact angles of the specimens are measured for each cycle. In addition, the surface deformation of the specimens before and after the test is analyzed through SEM imaging and EDS mapping. The degradation of the self-cleaning performance is evaluated before and after the wear test. The results show that superhydrophobic aluminum is approximately 4.5 times more durable than superhydrophobic copper; the copper and aluminum specimens could endure 21,000 and 4,300 cycles of wear, respectively. The results of the self-cleaning test demonstrate that superhydrophobic aluminum is superior to superhydrophobic copper. After the wear test, the self-cleaning rates of the copper and aluminum specimens decrease to 72.7% and 83.4%, respectively. The relatively minor decrease in the self-cleaning rate of the aluminum specimen, despite the large number of wear cycles, confirms that the superhydrophobic aluminum specimen is more durable than its copper counterpart. This study is expected to aid in evaluating the durability of superhydrophobic surfaces in the future owing to the advantage of performing wear tests on superhydrophobic surfaces without damaging the surface coating.

Measurement and Evaluation of Form Accuracy of Large Optical Surfaces (대구경 광학표면의 형상정밀도 측정 및 평가)

  • 김승우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.6-7
    • /
    • 2002
  • 대구경 광학계는 일반적으로 직경이 100 밀리미터 이상 1 미터에 이르는 거울이나 렌즈를 총칭한다. 이러한 대구경 광학계의 수요는 과거에는 천문 관측용 광학 부품에 주로 한정되었으나, 근래에 들어 인공위성의 지상 또는 우주 관측의 수요가 늘면서 다양한 형상의 대구경 광학계의 생산이 증대되고 있다. 또한 최근 들어서는 전자 및 디스플레이 산업에서 복잡한 형상 패턴의 노광 방식에 의한 기술의 사용이 증대되면서 노광기의 핵심부품인 대구경 광학계의 소비자 산업의 수요도 점차 확대되어 가고 있다. (중략)

  • PDF

Thermo-Acoustic Emission Behavior of Composites (복합재료의 열-음향방출거동)

  • 김영복;우성충;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.111-115
    • /
    • 2001
  • Thermo-acoustic emission (AE) from composite laminates under the repetitive thermal cyclic loads have been quantitatively analyzed in consideration of AE source mechanisms. The repetitive thermal load brought about a large reduction, i.e. an exponential decrease in AE total ringdown counts and AE amplitudes. It was thought that generation of thermo-AE during the first thermal cycle was not caused by crack propagation but by secondary microfracturing due to abrasive contact between crack surfaces.

  • PDF