• 제목/요약/키워드: Large-section reinforced concrete

검색결과 58건 처리시간 0.03초

Numerical method for biaxially loaded reinforced and prestressed concrete slender columns with arbitrary section

  • Lou, T.J.;Xiang, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.587-601
    • /
    • 2008
  • In this study, a numerical procedure based on the finite element method for materially and geometrically nonlinear analysis of reinforced and prestressed concrete slender columns with arbitrary section subjected to combined biaxial bending and axial load is developed. In order to overcome the low computer efficiency of the conventional section integration method in which the reinforced concrete section is divided into a large number of small areas, an efficient section integration method is used to determine the section tangent stiffness. In this method, the arbitrary shaped cross section is divided into several concrete trapezoids according to boundary vertices, and the contribution of each trapezoid to section stiffness is determined by integrating directly the trapezoid. The space frame flexural theory is utilized to derive the element tangent stiffness matrix. The nonlinear full-range member response is traced by an updated normal plane arc-length solution method. The analytical results agree well with the experimental ones.

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.

대단면 철근콘크리트 특수구조물 발파해체 시공 사례 (Execution Case Study on the Explosive Demolition of a Large-Section RC Special Structure)

  • 박훈;석철기
    • 터널과지하공간
    • /
    • 제19권5호
    • /
    • pp.397-406
    • /
    • 2009
  • 최근에는 구조적 노후화 및 기능적 요건을 만족하지 못하여 해체되는 산업구조물의 수요가 증가하고 있으며, 해체과정에서 발생되는 시간적, 공간적 환경위해요소를 최소화하기 위해 발파해체공법의 적용이 증가하고 있다. 본 시공 사례는 구조적 노후화와 기능적 요건을 충족하지 못하는 대단면 철근콘크리트 특수구조물인 Crusher & Screen 구조물의 발파해체를 기술하였다. 대단면 철근콘크리트 부재에 대한 다양한 사전취약화 및 발파패턴을 적용하였으며 발파진동 및 충격진동을 감소시키기 위해 동일한 기둥 내에서의 발파시차 및 발파구역간의 발파시차를 설정하였다. 대단면 철근콘크리트 특수구조물의 해체에 발파해체공법을 적용함으로써 주변 시설물에 대한 피해없이 안전하고 효율적으로 해체가 완료되었다.

철근보강 폴리마 콘크리트보의 변형특성 (Deformation Characteristics of Reinforced Polymer Concrete Beams)

  • 연규석
    • 한국농공학회지
    • /
    • 제30권1호
    • /
    • pp.63-72
    • /
    • 1988
  • The primary objective of the study was to find the deformation characteristics of reinforced polymer concrete beams. A test program was carried out to compare the behavior in deformation of polyester and MMA concrete beams with cement concrete beams but with varying ratios of tensile reinforcement. From the results the following conclusions can be made. 1.The various strengths of polymer concrete ware very high compared to the strengths for cement concrete. Also, compared to conventional concrete beams, flexural strength of reinforced polymer concrete beams was distinctly higher for the same section and steel ratios. 2.The polymer concrete beams exhibit large deflections accompanied by relatively high strengths as compared to cement concrete beams. 3.The average ultimate strain at the extreme compression fiber of polymer concrete beams was 0.01 1 cm / cm, and this value was about three to four times as large as that of cement concrete beams, 4.The polymer concrete beams developed more cracks which were more wide crack distribution spacing than the cement concrete beams, and the beams failed in a more ductile manner. 5.The reinforcing steel ratio has a significant effect on the beam strength, load-deflection response, stress-strain curve, and crack pattern of polymer concrete beams.

  • PDF

고강도 콘크리트를 이용한 철근콘크리트 기둥 부재의 연성평가에 관한 연구 (An Analytical Evaluation on the Ductility of Reinforced High-Strength Concrete Columns)

  • 장일영;송재호;한상묵;박훈규
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.57-66
    • /
    • 2000
  • The ductility is an important consideration in the design of reinforced concrete structures. In the seismic design of reinforced concrete columns, it is necessary to allow for relatively large ductilities that the seismic energy be absorbed without shear failure of significant strength degradation after the reinforcement yielding in columns. Therefore, prediction of the ductility should be as accurate as possible. This research investigate the ductile behavior of rectangular reinforced high-strength concrete columns like as bridge piers with confinement steel. The effects on the ductility of axial load, lateral reinforcement ratio, longitudinal reinforcement ratio, shear span ratio, and compressive strength of concrete were investigated analytically using layered section analysis. as the results, it was proposed the proper relationship between ductility and variables and formulated into equations.

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.

박리된 콘크리트의 진동 모드 형상을 이용한 콘크리트 구조물 박리 손상 영역 가시화 (I) : 모드 시험 (Visualization of Delamination Region in Concrete Structures using Mode Shapes of Delaminated Concrete Section (I) : Modal Test)

  • 오태근;신성우
    • 한국안전학회지
    • /
    • 제28권5호
    • /
    • pp.21-26
    • /
    • 2013
  • Delamination of cover concrete due to re-bar corrosion is a critical damage reducing structural safety of reinforced concrete structures. Therefore, it should be detected and evaluated to provide appropriate maintenance to recover structural integrity. Impact-echo method, which utilizes thickness vibration characteristics of delaminated concrete section, is effective for detection and evaluation of small areal size delamination. However, it may not be applicable for large areal size delamination in which flexural vibration modes are dominated. In this study, applicability of vibration mode shapes of delaminated concrete section is investigated for visualization of delamination region in concrete structures. Numerical and experimental modal tests are performed to estimate mode shapes of delaminated concrete section and linear absolute summation technique is proposed for effective visualization of delamination region based on estimated mode shapes.

An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.25-36
    • /
    • 2019
  • In this paper, an algorithm is presented to simulate numerically the reinforced concrete (RC) columns having any geometric form of section, loaded eccentrically along one or two axes. To apply the algorithm, the columns are discretized into two macro-elements (MEs) globally and the critical sections of columns are discretized into fixed rectangular finite elements locally. A proposed triple simultaneous dichotomy convergence method is applied to find the equilibrium state in the critical section of the column considering the three strains at three corners of the critical section as the main characteristic variables. Based on the proposed algorithm a computer program has been developed for simulation of the nonlinear behavior of the eccentrically-loaded columns. A good agreement has been witnessed between the results obtained applying the proposed algorithm and the experimental test results. The simulated results indicate that the ultimate strength and stiffness of the RC columns increase with the increase in axial force value, but large axial loads reduce the ductility of the column, make it brittle, impose great loss of material, and cause early failure.

콘크리트 충진 FRP 거더의 전단재하 실험에 관한 연구 (A Study on Shear Strength Test for FRP Girder of Filled Concrete)

  • 곽계환;장화섭;김우종;김회옥
    • 한국전산구조공학회논문집
    • /
    • 제21권4호
    • /
    • pp.365-373
    • /
    • 2008
  • 섬유복합재료(Fiber Reinforced Polymer, FRP)는 경량성, 높은 설계기준강도, 비전기 비자성 및 내부식성의 특징 등으로 인하여 최근 건설분야에서 많은 연구가 진행되고 있다. 그 중 GFRP(Glass Fiber Reinforced Polymer)는 가격 경쟁성에서 우수하여 일반적으로 많이 사용되고 있다. 그러나 GFRP는 상대적으로 낮은 탄성계수를 가지고 있어 처짐이 과대하게 발생함으로 구조부재 단면으로서 활용되기 위해서는 단면이 커야하며, 설계시 사용하중에 의한 처짐 제한에 대한 검토를 실시해야 한다. 이에 본 연구에서는 언급된 기술적인 문제점을 해결하기 위하여 대형 단면의 적용이 가능하도록 모듈형식의 단면을 제안하였다. 그리고 FRP의 낮은 강성을 확보하군 위하여 콘크리트를 충진하는 새로운 FRP+콘크리트 합성 거더 형상을 개발하였다. 개발된 FRP)콘크리트 합성 거더의 전단지간비와 콘크리트 충진 여부에 따른 전단강도 및 처짐, 중립축 변화를 확인하고자 전단실험을 실시하였다.

Effects of Replacement Ratio of Recycled Coarse Aggregate on the Shear Performance of Reinforced Concrete Beams without Shear Reinforcement

  • Yun, Hyun-Do;You, Young-Chan;Lee, Do-Heon
    • 토지주택연구
    • /
    • 제2권4호
    • /
    • pp.471-477
    • /
    • 2011
  • This paper will describe the experimental results on the shear behaviors of reinforced concrete (RC) beam with recycled coarse aggregate (RCA). The primary objective of this research is to evaluate the influences of different RCA replacement percentage (i.e, 0%, 30%, 60%, and 100%) on the shear performance of reinforced concrete beams without shear reinforcement. Eight large-scale RC beams without shear reinforcement were manufactured and tested to shear failure. All had a rectangular cross-section with 400mm width ${\times}$ 600mm depth and 6000mm length, and were tested with a shear span-to-depth of 5.1. The results showed that the deflection and shear strength were little affected by the different RCA replacement percentage. Actual shear strength of each RCA beam was compared with the shear strength predicted using the provisions of ACI 318 code and Zsutty'e equation for shear design of RC beams. ACI 318 code predicted the shear strength of RCA reinforced concrete beams well.