• Title/Summary/Keyword: Large-scale slope

Search Result 193, Processing Time 0.02 seconds

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

Planting Method of Buffer Green Space in the Reclaimed Seaside Areas, Rokko Island, Kobe, Japan (일본 고베시(신호시(神戶市)) 로코(육갑(六甲))아일랜드 임해매립지의 완충녹지 식재기법 연구)

  • Han, Bong-Ho;Kim, Jong-Yup;Choi, Jin-Woo;Cho, Yong-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • This study was carried out to suggest the basic data of planting method for construction of buffer green space based on the land use in case of reclaimed land by analyzing land structure, planting concept, and planting structure in buffer green space, Rokko Island, Kobe, Japan. Rokko Island(total area: 580ha) is divided into port and logistics industry area and urban area by constructing the box type large-scale buffer green space. The land structure of buffer green space were biased mounding type, parallel mounding type, and complex mounding type. The width of buffer green space was 50meters in case of northern area, from 28 to 32meters in case of eastern area, and 37.5meters in case of western area, and the slope of that was from 18 to 25 degrees and the height of that was from 2 to 15meters. There were applied landscape and buffer planting concept on the sea side area of northern buffer green space, on the other hand landscape and shade planting concept on the Inner city side area of that. According to the result of planting structure analysis of northern buffer green space, the main woody species were those of deciduous-evergreen species grow in warm-temperate forest zone such as Quercus glauca, Cinnamomum camphora, Machilus thunbergii, Elaeagnus maritima. The results of maximum number of species and planting density by $100mm^2$ was that 9 species 22 individuals in canopy layer, 9 species 15 individuals in understory layer, 3 species 67 individuals in shrub layer, and 14 species 104 individuals in total. The plant coverage of northern buffer green space based on the ecological planting method was from 69 to 139% in case of canopy layer, from 26 to 38% in case of understory layer, from 6 to 7% in case of shrub layer, and from 101 to 184% in total. Index of plant crown volume of northern buffer green space based on the ecological planting method was from 1.40 to $3.12m^3/m^2$ in case of canopy layer, from 0.43 to $0.55m^3/m^2$ in case of understory layer, $0.06m^3/m^2$ in case of shrub layer, and from 1.89 to $3.73m^3/m^2$ in total.

A Study on the Direction of Planting Renewal in the Green Area of Seoul Children's Grand Park Reflecting Functional Changes (기능변화를 반영한 서울어린이대공원 조성녹지의 식재 리뉴얼 방향성 연구)

  • Park, Jeong-Ah;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.21-36
    • /
    • 2023
  • As a solution to environmental issues, such as climate change response, the carbon neutrality strategy, urban heat islands, fine dust, and biodiversity enhancement, the value of urban green spaces and trees are becoming important, and various studies dealing with the effects of trees for environmental improvement are being conducted. This study comprehensively considers the preceding studies on planting tree species, planting structure, planting density, and planting base to propose a direction for the planting renewal of green areas in urban parks and applies the findings to a renewal plan to improve the urban environment through landscaping trees. A field survey was conducted on the planting status of Seoul Children's Grand Park, a large-scale neighborhood park in Seoul, and based on the survey data, a planting function evaluation was conducted, and areas needing improvement in planting function were identified. The planting function evaluation was carried out considering the park function setting, planting concept according to spatial function, and planting status. As a result of the study, the direction of planting renewal according to functional change was derived for each stage of planting function evaluation. Increasing the green area ratio is a priority in setting up park functions, but user convenience should also be considered. As a concept of planting, visual landscape planting involves planting species with beautiful tree shapes, high carbon absorption, and fine dust reduction effects. Ecological landscape planting should create a multi-layered planting site on a slope. Buffer planting should be created as multi-layered forests to improve carbon absorption and fine dust reduction effects. Green planting should consist of broad-leaved trees and herbaceous layers and aim for the natural planting of herbaceous species. For plant species, species with high urban environment improvement effects, local native species, and wild bird preferred species should be selected. As for the planting structure, landscape planting sites and green planting sites should be composed of trees, shrubs, and trees and herbaceous layers that emphasize ecology or require multi-layered buffer functions. A higher standard is applied based on the planting interval for planting density. Installing a rainwater recycling facility and using soil loam for the planting base improves performance. The results of this study are meaningful in that they can be applied to derive areas needing functional improvement by performing planting function evaluation when planning planting renewal of aging urban parks and can suggest renewal directions that reflect the paradigm of functional change of created green areas.