• Title/Summary/Keyword: Large-scale Bursting Event

Search Result 2, Processing Time 0.018 seconds

Large Scale Bursting Event in a Channel Flow (난류 채널유동에서 생성된 거대 파열 현상에 관해서)

  • Na, Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1060-1067
    • /
    • 2001
  • A large-scale bursting event has been analyzed in a turbulent channel flow using a data obtained from a direct numerical simulation (DNS). Large-scale, plume-like structures have been frequently observed in many experimental results, but the origin of those structures is far from being fully understood. It is believed that those large scale events occur occasionally but contribute significantly to the generation of Reynolds shear stress in the outer layer. This paper attempts to give detailed examples of those large-scale motions observed in a turbulent channel flow at relatively low Reynolds number.

Analysis of Coherent Structure of Turbulent Flows in the Rectangular Open-Channel Using LES (LES를 이용한 직사각형 개수로 난류흐름의 조직구조 분석)

  • Ban, Chaewoong;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1435-1442
    • /
    • 2014
  • This study presented numerical simulations of smooth-bed flows in the rectangular open-channel using the source code by OpenFOAM. For the analysis of the turbulent flow, Large Eddy Simulations were carried out and the dynamic sub-grid scale model proposed by Germano et al. (1991) is used to model the residual stress term. In order to analyze the coherent structure, the uw quadrant method proposed by Lu and Willmarth (1973) is used and the contribution rate and the fraction time of the instantaneous Reynolds stress are obtained in the Reynolds stress. The results by the present study are analyzed and compared with data from previous laboratory studies and direct numerical simulations. It is found that the contribution rate of the ejection events is larger than that of sweep events over the buffer layer in the open-channel flow over the smooth bed, however, the frequency of the sweep event is higher than that of the ejection events.