• Title/Summary/Keyword: Large-area plasma

Search Result 189, Processing Time 0.03 seconds

A study on Silicon dry Etching for Solar Cell Fabrication Using Hollow Cathode Plasma System (태양전지 제작을 위한 Hollow Cathode Plasma System의 실리콘 건식식각에 관한 연구)

  • ;Suresh Kumar Dhungel
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.62-66
    • /
    • 2004
  • This paper investigated the characteristics of a newly developed high density hollow cathode plasma (HCP) system and its application for the etching of silicon wafers. We used SF$_{6}$ and $O_2$ gases in the HCP dry etch process. Silicon etch rate of $0.5\mu\textrm{m}$/min was achieved with $SF_6$$O_2$plasma conditions having a total gas pressure of 50mTorr, and RF power of 100 W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. The results of this experiment can be used for various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications.s.

Preparation of MgO Protective layer by reactive magnetron Sputtering (반응성 스퍼트링에 의한 MgO 유전체 보호층 형성에 관한 연구)

  • Ha, H. J.;Lee, W. G.;Ryu, J. H.;Song, Y.;Cho, J. S.;Park, C. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.59-62
    • /
    • 1996
  • Plasma displays (PDP) as a large area wall-hanging display device are rabidly developed with flat CRT, TPT LCD and etc. Especially, AC Plasma Display Panels(AC PDPs) have the inherent memory function which is effective for large area displays. The memory function in AC PDPs is caused by the accumulation of the electrical charge on the protecting layer formed on the dielectric layer. This MgO protective layer prevents the dielectric layer from sputtering by ion in discharge plasma and also has the additional important roll in lowering the firing voltage due to the large secondary electron emission coefficient). Until now, the MgO Protective layer is mainly formed by E-Beam evaporation. With increasing the panel size, this process is difficult to attain cost reduction, and are not suitable for large quantity of production. To the contrary, the methode of shuttering are easy to apply on mass production and to enlarge the size of the panel and shows the superior adhesion and uniformity of thin film. In this study, we have prepared MgO protective layer on AC PDP Cell by reactive magnetron sputtering and studied the effect of MgO layer on the surface discharge characteristics of ac PDP.

  • PDF

PROPAGATION PROCESSES OF NEWLY DEVELOPED PLASMA JET IGNITER

  • Ogawa, Masaya;Sasaki, Hisatoshi;Yosgida, Koji;Shoji, Hideo;Tanaka, Hidenori
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of a cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had an annular circular orifice has been developed. The purpose of this study is to elucidate the relationship between the newly developed plasma Jet igniter configuration and combustion enhancement effects. In this newly developed plasma Jet igniter, flame front wrinkle appears on the flame front and flame propagates rapidly. Plasma Jet influences on the flame propagation far long period when the plasma jet igniter has issuing angle 90 degrees and large cavity volume, because the plasma jet only lasts several ms. However, in the early stage of combustion, flame front area of issuing angle 45 degrees is larger than that of 90 degrees, because the initial flame kernel is formed by the plasma jet.

Cooling Performance Analysis of Water-Cooled Large Area Magnetron Sputtering System (대면적 마그네트론 스퍼터링 증착장비의 수냉시스템 방열성능 해석)

  • Kim, Kyoung-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 2010
  • In a large area magnetron sputtering system, which is under the influence of high heat load from the plasma, it is necessary to use the effective water cooling in order to maintain the proper deposition performance and the economic use of target materials. A series of three-dimensional numerical simulations are carried out on the simplified model of the large area magnetron sputtering system with the cooling plate that includes the U-shaped water channel. The analysis is focused on the effects of water channel geometry, cooling water flowrate, thermal conductivity of target material, and the degree of target erosion on the cooling performance of cooling plate, which is represented by the temperature distribution of target material.

Simulation for Magnetic Confined Nuclear Fusion in Korea (자기밀폐형 핵융합과 시뮬레이션)

  • You, Kwang-Il;Kwon, Jae-Min;Park, ByungHo;Park, Gunyoung;Na, Yong-Su
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • In this article, we present a brief explanation of simulation for magnetic confined fusion plasma. Devices for nuclear fusion experiment become large, complex, and expensive these days, so the simulation can be a valuable tool for understanding and expecting the fusion plasma physics. Research areas presented here are plasma equilibrium and instability, turbulence study, heating and current driving, boundary and divertor area plasma physics, and integrated operation scenario study. Traditionally, many foreign codes have been used because those are verified and stable, however our own MHD and gyrokinetic codes with better performance are under developing recently. While researchers have devoted their effort to make and use a simulation code in individual areas, many ones also endeavor to integrate the simulation codes in different areas for thorough understanding of fusion plasma physics.

Surface wave excited plasma CVD technologies for the synthesis of carbon nanomaterials (카본 나노재료 합성을 위한 표면파 플라즈마 CVD 기술)

  • Kim, Jaeho
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.16-26
    • /
    • 2015
  • Carbon nanomaterials including nanocrystalline diamond and graphene films are expected to play a core role in $21^{st}$ century industries due to their amazing physicochemical properties. To achieve their practical utilization and industrialization, the development of their mass production technologies is strongly required. Recently, a surface wave excited plasma (SWP) which is produced using microwaves has been attracting special attentions as a candidate for the mass production technology of carbon nanomaterials. SWP can allow a low-temperature large-area plasma chemical vapor deposition (CVD) system. Here, this article introduces the promising SWP-CVD technology. Plasma characteristics in a SWP will be introduced in detail to help understanding how to use and control a SWP as a plasma source for CVD applications.

Patterned Arrays of Well-Ordered ZnO Nanorods Assisted with Polystyrene Monolayer By Oxygen Plasma Treatment

  • Choi, Hyun Ji;Lee, Yong-Min;Lee, Yulhee;Seo, Hyeon Jin;Hwang, Ki-Hwan;Kim, Dong In;Yu, Jung-Hoon;Kim, Jee Yun;Nam, Sang Hun;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.146-146
    • /
    • 2016
  • Zinc Oxide (ZnO) was known as a promising material for surface acoustic wave devices, gas sensors, optical devices and solar cells due to piezoelectric material, large band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature. In particular, the alignment of ZnO nanostructures into ordered nanoarrays can bring about improved sensitivity of devices due to widen the surface area to catch a lot of gas particle. Oxygen plasma treatment is used to specify the nucleation site of round patterned ZnO nanorods growth. Therefore ZnO nanorods were grown on a quartz substrate with patterned polystyrene monolayer by hydrothermal method after oxygen plasma treatment. And then, we carried out nanostructures by adjusting the diameter of the arranged ZnO nanorods according to polystyrene spheres of various sizes. The obtained ZnO nanostructures was characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM).

  • PDF

TWO DIMENSIONAL SIMULATION OF BEAM INJECTION INTO NEUTRAL PLASMA (Beam 전자와 중성 Plasma 사이의 상호작용에 관한 2차원적 수치계산)

  • 선종호;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.113-123
    • /
    • 1990
  • Two dimensional electrostatic model was used to investigate the interactions between beam electron and neutral plasma. It was found that results heavily depend on the beam density. When the beam electron density is lower than the ambient plasma beam density, many beam electrons exhibit vortex structure through beam-plasma interactions and can propagate into the ambient plasma easily from the injection area. On the other hand, when the beam density larget than that of the neutral ambient plasma, it was found that most of the beam electrons constitute return current and ion with much larger mass than that of the electron can be accelerated according to the magnetic field strength. Furthermore, as external field strength varies, it was found that propagation and interaction of the beam can show large dependence on it.

  • PDF

CCP and ICP Combination Impedance Matching Device for Uniformity Improvement of Semiconductor Plasma Etching System (반도체 플라즈마 식각 시스템의 균일도 향상을 위한 CCP와 ICP 결합 임피던스정합 장치)

  • Jung, Doo-Yong;Nam, Chang-Woo;Lee, Jong-Ho;Choi, Dae-Kyu;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • This paper proposes a DFPS (Dual Frequency Power Source) impedance matching device for uniformity improvement of a semiconductor plasma etching system. The DFPS consists of two parts for safe plasma processing on large-area substrates. The first part is an ICP (Inductively Coupled Plasma) for high integration by using ferrite core. The second part is a CCP (Capacitive Coupled Plasma) to control uniformity of whole cells. Proposed DFPS can achieve high productivity improvement required for semiconductor equipment industry. The proposed plasma system is analyzed, simulated and experimentally verified with a matching equipment at 27.12MHz and 400kHz.