• Title/Summary/Keyword: Large-area plasma

Search Result 189, Processing Time 0.036 seconds

Electrical Properties and Synthsis of Large Area Conductive Nano Carbon Films by Linear Ion Beam Source

  • Yeo, Gi-Ho;Sin, Ui-Cheol;Yu, Jae-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.220.1-220.1
    • /
    • 2014
  • 본 연구에서는 PECVD 공법 중에 이온화 에너지가 높은 선형이온빔 소스를 이용하여 고온에서 전도성 카본박막을 코팅하였다. 카본 박막 코팅을 위한 Precursor는 $C_2H_2$ gas를 이용하였으며, 온도에 따른 카본 박막의 전기적 특성 및 두께에 따른 카본 박막 성장 구조를 분석하였다. 카본 박막의 전기적 특성은 Interfacial contact resistance (ICR) 방법으로 측정하였으며, 접촉 저항 측정을 위한 모재는 SUS316L stainless steel을 사용하였고 카본 박막 성장 구조 분석을 위해서는 폴리싱된 Si-wafer를 사용하였다. 선형이온빔 소스를 이용하여 상온에서 증착한 카본 코팅의 접촉저항 값은 50 nm 코팅 두께에서 $660m{\Omega}cm^2@10kgf/cm^2$으로 비정질상의 특성을 나타냈으며, 고온에서는 $14.8m{\Omega}cm^2@10kgf/cm^2$으로 온도가 증가함에 따라 비정질상의 카본 박막이 전도성을 가지는 카본박막으로의 성장을 확인할 수 있었다. 또한 전도성 카본 박막의 성장 구조 분석은 FE-SEM 및 Raman spectrum 분석을 통해 확인하였으며, 그 결과 코팅 두께가 증가할수록 카본 입자들은 수nm에서 약 150 nm의 카본 cluster를 형성하며 성장하였다. 이때 전도성 카본 박막의 두께에 따른 접촉저항의 값은 고온 조건에서 카본 박막의 두께가 약 100 nm일 때, $12.1m{\Omega}cm^2@10kgf/cm^2$의 가장 낮은 값을 가졌다. 위의 결과를 경제성이 아주 우수한 대면적 전도성 나노 카본 박막의 상용화 가능성이 높아질 것으로 기대된다.

  • PDF

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF

Low Temperature Growth of Single-walled Carbon Nanotube Forest

  • Lee, Il-Ha;Im, Ji-Woon;Kim, Un-Jeong;Bae, Eun-Ju;Kim, Kyoung-Kook;Lee, Eun-Hong;Lee, Young-Hee;Hong, Seung-Hun;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2819-2822
    • /
    • 2010
  • Forest of single-walled carbon nanotubes (SWNTs) was grown at $450^{\circ}C$ by water-plasma chemical vapor deposition using ultrathin iron on alumina supporting film. The growth rate of the SWNT forest is ${\sim}0.9\;{\mu}m/min$, and the diameters of nanotubes are mainly in a range of 3.0 ~ 3.5 nm. The low intensity ratio of D- to G-band ($I_D/I_G$ ~ 0.098) in Raman spectra indicates that our SWNT forest grown at $450^{\circ}C$ is fairly pure and crystalline. This low temperature growth of SWNT forest may enable variable applications requiring the vertically-aligned nanotubes to obtain large surface area.

The Study of Addressing Time and Electrical and Optical Characteristics as Phosphor Thickness and Height of discharge Space in ac-PDP (형광체 두께와 방전공간의 변화에 따른 ac PDP의 어드레싱 속도와 전기광학적 특성에 관한 연구)

  • Heo, Jeong-Eun;Kim, Gyu-Seup;Park, Jung-Hoo;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1815-1817
    • /
    • 2000
  • Plasma display Panels(PDPs) are one of the leading technologies currently under development for large-area high-brightness flat panel displays. However, the luminance and luminous efficiency of at PDPs should be improved. Especially, one of the main factors affecting on the luminance and luminous efficiency of ac PDP may be the phosphor thickness and size of discharge space. In this study, we examined into addressing time, electrical and optical properties as a parameter of the phosphor thickness and the size of discharge space during the display period of ac PDP. It is found out that the optimum phosphor thickness was $50{\mu}m$ and height of discharge space was about $100{\mu}m$.

  • PDF

PECVD Silicon Nitride Film Deposition and Annealing Optimization for Solar Cell Application (태양전지 응용을 위한 PECVD 실리콘 질화막 증착 및 열처리 최적화)

  • Yoo, Jin-Su;Dhungel Suresh Kumar;Yi, Jun-Sin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.565-569
    • /
    • 2006
  • Plasma enhanced chemical vapor deposition(PECVD) is a well established technique for the deposition of hydrogenated film of silicon nitride (SiNx:H), which is commonly used as an antireflection coating as well as passivating layer in crystalline silicon solar cell. PECVD-SiNx:H films were investigated by varying the deposition and annealing conditions to optimize for the application in silicon solar cells. By varying the gas ratio (ammonia to silane), the silicon nitride films of refractive indices 1.85 - 2.45 were obtained. The film deposited at $450^{\circ}C$ showed the best carrier lifetime through the film deposition rate was not encouraging. The film deposited with the gas ratio of 0.57 showed the best carrier lifetime after annealing at a temperature of $800^{\circ}C$. The single crystalline silicon solar cells fabricated in conventional industrial production line applying the optimized film deposition and annealing conditions on large area substrate of size $125mm{\times}125mm$ (pseudo square) was found to have the conversion efficiencies as high as 17.05 %. Low cost and high efficiency silicon solar cells fabrication sequence has also been explained in this paper.

Black Silicon Layer Formation using Radio-Frequency Multi-Hollow Cathode Plasma System and Its Application in Solar Cell

  • U. Gangopadhyay;Kim, Kyung-Hae;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.10-14
    • /
    • 2003
  • A low-cost, large area, random, maskless texturing scheme independent of crystal orientation is expected to have significant impact on terrestrial photovoltaic technology. We investigated silicon surface microstructures formed by reactive ion etching (R IE) in Multi-Hollow cathode system. Desirable texturing effect has been achieved when radio-frequency (rf) power of about 20 Watt per one hollow cathode glow is applied for our RF Multi -Hollow cathode system. The black silicon etched surface shows almost zero reflectance in the visible region as well as in near IR region. The etched silicon surface is covered by columnar microstructures with diameters from 50 to 100 nm and depth of about 500 nm. We have successfully achieved 11.7 % efficiency of mono-crystalline silicon solar cell and 10.2 % for multi-crystalline silicon solar cell.

Electricla Properties of Xe Plasma Flat Lamp (Xe 플라즈마 평판 램프의 전기적 특성)

  • Choi, Yong-Sung;Cho, Jae-Cheol;Hong, Kyung-Jin;Lee, Woo-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.35-38
    • /
    • 2006
  • As a display becomes large recently, Acquisition of high luminance and Luminance uniformity is becoming difficult in the existing CCFL or EEFL backlight system. So, study for a performance enhancement has enforced. but lamp development of flat type is asked for high luminance and a luminance uniformity security in of LCD and area anger trend ultimately. In this paper, we changed a tip shape of an electrode for production by the most suitable LCD backlight surface light source, and confirmed discharge characteristic along discharge gas pressure and voltage, and confirmed electric field distribution and discharge energy characteristic through a Maxwell 2D simulation. Therefore the discharge firing voltage characteristic showed a low characteristic than a rectangular type and round type in case of electrode which used tip of a triangle type, and displayed a discharge electric current as a same voltage was low.

  • PDF

Clinical Comparison Between Inside Blood Flow Type and Outside Blood Flow Type in the Hollow Fiber Oxygenator (Hollow Fiber Oxygenator에서 Inside Blood Flow Type과 Outside Blood Flow Type의 임상적 비교)

  • 안재호
    • Journal of Chest Surgery
    • /
    • v.25 no.5
    • /
    • pp.451-457
    • /
    • 1992
  • The hollow fiber oxygenator is the most advanced one for the cardiopulmoanry bypass. They have two different types of the hollow fiber systems according to the way how the blood go through the fibers. One is inside blood flow type and the other outside type. In order to find out which is better to prevent blood cell destruction, we selected 40 valve replacing patients and divided them into 2 groups prospectively. In group I [n=20], inside blood flow type[BCM-7a], CO2 excretion is more effective than group II, that is partly because of the relative large surface area of the BCM-7. In group II [n=20], outside blood flow type [MAXIMAa], they have better quality to preserve platelet count. We also studied about several other items such as SaO2, Hemoglobin and RBC, WBC, fibrinogen, LDH, plasma hemoglobin, haptoglobulin and so on. But we cannot find any differences between two groups with any statistical meanings [p<0.05]. We conclude that both of two oxygenators are excellent in the aspects of gas exchange and blood cell preservation.

  • PDF

A Case of Cervical Malignant Lymphoma Coexisted with Multicentric Castleman's Disease (다발성 캐슬만병과 공존한 경부 악성 림프종 1례)

  • Jang, Gyu Ho;Jung, Young Do;Seo, Youn Tae;Kim, Jeong Kyu
    • Korean Journal of Head & Neck Oncology
    • /
    • v.32 no.2
    • /
    • pp.35-39
    • /
    • 2016
  • Castleman's disease (CD) is an uncommon lymphoproliferative disorder. The disease entity is classified into 2 clinical subtypes, unicentric and multicentric type. Prevalence of lymphoid malignancy in multicentric CD (MCD) is very low. In this case, we report a case of 77 years old woman who developed high fever and swelling in both side of her neck. Neck lymph node biopsy revealed plasma cell hyperplasia. Patient's symptom was subsided after treatment with Dexamethasone. Three months later, multiple lymph node enlargement was developed in abdomen and neck area again. Repeated neck lymph node biopsy confirmed diffuse large B cell lymphoma. The patient started chemotherapy.

Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites

  • Yong, Seok-Min;Choi, Doo Hyun;Lee, Kisu;Ko, Seok-Young;Cheong, Dong-Ik
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.59-62
    • /
    • 2019
  • Y2O3-MgO nanocomposites are promising materials for hypersonic infrared windows and domes due to their excellent midIR transmittance and mechanical properties. In this work, influence of SPS heating rate on the microstructure, IR transmittance, and mechanical properties of Y2O3-MgO nanocomposites was investigated. It was found that the average grain size decreases with a decreasing heating rate, which can be attributed to high defect concentration by rapid heating and deformation during densification. Also, the residual porosity decreases with a decreasing heating rate, which is ascribed to the enhancement of grain boundary diffusion by a large grain-boundary area (a small grain size). Consequently, high transmittance and hardness were attained by the low heating rate. On the other hand, the mechanical strength showed little difference with the heating rate change, which is somewhat different from the general knowledge on ceramics and will be discussed in this letter.