• Title/Summary/Keyword: Large-Scale Display

Search Result 133, Processing Time 0.032 seconds

Development of a 14.1 inch Full Color AMOLED Display with Top Emission Structure

  • Jung, J.H.;Goh, J.C.;Choi, B.R.;Chai, C.C.;Kim, H.;Lee, S.P.;Sung, U.C.;Ko, C.S.;Kim, N.D.;Chung, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.793-796
    • /
    • 2005
  • A structure and a design of device were developed to fabricate large-scale active matrix organic light-emitting diode (AMOLED) display with good color purity and high aperture ratio. With these technologies, we developed a full color 14.1 inch WXGA AMOLED display. For the integration of OLED on an active matrix a-Si TFT backplane, an efficient top emission OLED is essential since the TFT circuitry covers a large position of the pixel aperture. These technologies will enable up the OLED applications to larger size displays such as desktop monitors and TVs.

  • PDF

Cooling Analysis of Super Precision and Large Stage for OLED

  • Kim, Bo-Seon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.51-55
    • /
    • 2018
  • As the OLED industry develops, display equipment is becoming larger. As a result, the stage required for display equipment is getting bigger. This enlargement led to increase in OLED production and industrial development. However, due to the large scale of the stage, other problems due to overheating and overheating caused by heavy load on the linear motor, which is mainly used in the stage, must be solved. In this study, a linear motor equipped with a cooling channel is modeled and the three - dimensional heat conduction flow analysis for this model is simulated using Fluent to analyze the cooling efficiency and cooling efficiency according to the cooling water flow rate. As a result, the cooling channel was effective and the cooling effect and efficiency were the best when the flow rate was about 5 ~ 10 L./min. In addition, the cooling effect is increased when the flow rate is increased, but the efficiency is significantly lowered when the flow rate is more than the predetermined value.

360-degree Video Streaming System for Large-scale Immersive Displays (대형 가상현실 공연장을 위한 360도 비디오 스트리밍 시스템)

  • Yeongil, Ryu;Kon Hyong, Kim;Andres, Cabrera;JoAnn, Kuchera-Morin;Sehun, Jeong;Eun-Seok, Ryu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.848-859
    • /
    • 2022
  • This paper presents a novel 360-degree video streaming system for large-scale immersive displays and its ongoing implementation. Recent VR systems aim to provide a service for a single viewer on HMD. However, the proposed 360-degree video streaming system enables multiple viewers to explore immersive contents on a large-scale immersive display. The proposed 360-degree video streaming system is being developed in 3 research phases, with the final goal of providing 6DoF. Currently, the phase 1: implementation of the 3DoF 360-degree video streaming system prototype is finished. The implemented prototype employs subpicture-based viewport-dependent streaming technique, and it achieved bit-rate saving of about 80% and decoding speed up of 543% compared to the conventional viewport-independent streaming technique. Additionally, this paper demonstrated the implemented prototype on UCSB AlloSphere, the large-scale instrument for immersive media art exhibition.

An Energy Efficient RF Protocol Structure for a Large-Scale In-Home Display Deployment (대규모 In-Home Display 보급을 위한 에너지 효율적 RF 통신 프로토콜 체계)

  • Lee, Seung-Min;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • In-Home Display (IHD) is one of the most popular ways to induce voluntary customer participation in energy savings. Various communication technologies are used for recent IHD implementations, but most IHD systems are designed for each house because of their limitations such as communication coverage area and operation complexity. In this study, 400MHz RF communication is used for economical large-scale deployment of IHDs especially for apartment complexes that represent typical residentioal environment in Korea. Since it is essential to use internal batteries to increase the usability of IHD, the frequent changes of them should be avoided. By dividing communication data into 3 types such as common data, long term data, and short term data depending on their update periods, energy efficient communication protocol is designed and proposed. In result, the quantity of data and the battery consumption of IHD are reduced to 23.4% and 31.5% each without harming service quality.

Improved Inference for Human Attribute Recognition using Historical Video Frames

  • Ha, Hoang Van;Lee, Jong Weon;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.120-124
    • /
    • 2021
  • Recently, human attribute recognition (HAR) attracts a lot of attention due to its wide application in video surveillance systems. Recent deep-learning-based solutions for HAR require time-consuming training processes. In this paper, we propose a post-processing technique that utilizes the historical video frames to improve prediction results without invoking re-training or modifying existing deep-learning-based classifiers. Experiment results on a large-scale benchmark dataset show the effectiveness of our proposed method.

A VR-based Tile Display System for the Distributed Visualization (분산 가시화를 위한 가상현실 타일 디스플레이 시스템의 개발)

  • Cha, Moo-Hyun;Lee, Jae-Kyung;Hwang, Jin-Sang;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.167-177
    • /
    • 2010
  • In recent years, the use of high-resolution tiled display system which does not have restrictions on the size of the screen and implements various layout of tile is increasing in order to evaluate the digital mock-up in physical scale or explore large engineering data set in detail. In this study, we developed multi-channel distributed visualization system which provides a virtual reality-based visual contents using 3D open-source graphics engine. Efficient data structures and exchange methods were proposed as a scene synchronization technology in PC cluster environments. DLP-Cube based tiled visualization system which provides $5{\times}2$ layout of display wall was developed and we validated our approach using this system. In addition, we introduced integrated control program that administrates PC cluster environment in remote and controls the layout of display channels.

Module of Carbon Nanotubes Backlight

  • Chou, Lin-En;Lin, Biing-Nan;Jiang, Yau-Chen;Tsou, Te-Hao;Fu, Chuan-Hsu;Hsiao, Ming-Chun;Chang, Yu-Yang;Lin, Wei-Yi;Lin, Ming-Hung;Lee, Cheng-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.150-155
    • /
    • 2006
  • Carbon nanotubes backlight unit (CNT-BLU) that lightened by field emission was developed into practicability. According to our novel structure, AC mode circuit design and simple printing process, CNT-BLU could achieve 85% of uniformity, 8000 nits of brightness and low material and fabrication cost. Based on these performances, this new planar backlight technology has chances to proceed to mass production and has the potential to replace traditional backlight technology because of its good properties, like the simple processes, easy to large scale, low surface temperature, low power consumption, optical film-free and Hg-free, etc.

  • PDF

Large-scale Ambient Display Environment for providing Multi Spatial Interaction Interface (멀티 공간 인터랙션 인터페이스 제공을 위한 대규모 앰비언트 디스플레이 환경)

  • Yun, Chang Ok;Park, Jung Pil;Yun, Tae Soo;Lee, Dong Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.30-34
    • /
    • 2009
  • Recently, systems providing the interaction different according to an interval between a user and the display were developed in order to construct the ambient or the ubiquitous computing environment. Therefore, we propose a new type of spatial interaction system; our main goal is to provide the interactive domain in the large-scale ambient display environment. So, we divide into two zones of interaction dependent on the distance from the interaction surface interactive zone and ambient zone. In interactive zone, the users can approach the interaction surface and interact with natural hand-touch. When the users are outside the range of the interactive zone, the display shows only general information. Therefore, this system offers the various interactions and information to users in the ubiquitous ambient environment.

  • PDF

A Dual In-Plane Electrode Structure for Better Brightness in a Helix-Deformed FLCD

  • You, Doo-Hwan;Lee, Sin-Doo;Lee, Ju-Hyun;Na, Do-Jun
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • We propose a dual in-plane parallel electrode structure of a vertical configuration of a helix-deformed ferroelectric liquid crystal (HDFLC) mode for better brightness than a single in-plain electrode case. This structure provides high brightness in addition to the analog gray scale capability, fast response, and wide-viewing characteristics. In contrast to a conventional HDFLC in a planar geometry, smectic layers arrange themselves parallel to the substrates and thus extremely uniform alignment of molecules in a large area is naturally achieved in our new configuration.

  • PDF

How Many Parameters May Be Displayed on a Large Scale Display Panel\ulcorner

  • Lee, Hyun-chul;Sim, Bong-Shick;Oh, In-suk;Cha, Kyoung-ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.254-259
    • /
    • 1995
  • Large scale display panel(LSDP) is a main component in the next generation main control rooms. LSDP is located at the front of VDU-based operator's workstation and plays an important role in providing operators with overall information of plant status through mimic diagram, text/digit, graph, and so on. A critical matter determined at the first stage of LSDP design is how much information is displayed, because the information density of LSDP affects operator's performance. Many human factors guidelines recommend low information density of displays to avoid degrade of operator's performance, but doesn't provide a useful limit of information density. In this paper, we considered information density as the number of plant parameters and investigated the proper number of plant parameters through a human factors experiment. The experiment with 4 subjects was carried out and response time, error, and heart rate variation as criterion measures were recorded and analyzed. As the results, it is identified that the proper number of parameters in a LSDP is about thirty.

  • PDF