• Title/Summary/Keyword: Large-Fire Areas

Search Result 84, Processing Time 0.022 seconds

Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4 (농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가)

  • Cha, Sungeun;Won, Myoungsoo;Jang, Keunchang;Kim, Kyoungmin;Kim, Wonkook;Baek, Seungil;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1273-1283
    • /
    • 2022
  • Recently, forest fires have frequently occurred due to climate change, leading to human and property damage every year. The forest fire monitoring technique using remote sensing can obtain quick and large-scale information of fire-damaged areas. In this study, the Gangneung and Donghae forest fires that occurred in March 2022 were analyzed using the spectral band of Sentinel-2, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI) to classify the affected areas of forest fires. The U-net based convolutional neural networks (CNNs) model was simulated for the fire-damaged areas. The accuracy of forest fire classification in Donghae and Gangneung classification was high at 97.3% (f1=0.486, IoU=0.946). The same model used in Donghae and Gangneung was applied to Uljin and Samcheok areas to get rid of the possibility of overfitting often happen in machine learning. As a result, the portion of overlap with the forest fire damage area reported by the National Institute of Forest Science (NIFoS) was 74.4%, confirming a high level of accuracy even considering the uncertainty of the model. This study suggests that it is possible to quantitatively evaluate the classification of forest fire-damaged area using a spectral band and indices similar to that of the Compact Advanced Satellite 500 (CAS500-4) in the Sentinel-2.

The Method of Linking Fire Survey Data with Satellite Image-based Fire Data (산불피해대장 정보와 위성영상 기반 산불발생데이터의 연계 방안)

  • Kim, Taehee;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1125-1137
    • /
    • 2020
  • This study aimed to propose the method of linking satellite image-based forest fire data to supplement the limitation of forest fire survey data that records only the ignition location and area of forest fire. For this purpose, a method was derived to link the fire survey data provided by the Korea Forest Service between January 2012 and December 2019 with MODIS and VIIRS image-based forest fire data. As a result, MODIS and VIIRS-based forest fire data out of 191 wildfires in the forest fire survey data were able to identify 11% and 44% of fire damage area, respectively. An average of 56% of forest damage area was extracted from VIIRS-based forest fire data compared to forest fire areas identified by high-resolution Sentinel-2A satellites. Therefore, for large-scale forest fires, VIIRS wildfire data can be used to compensate for the limitations of forest fire survey data that records only the ignition location and area.

Change Detection of Damaged Area and Burn Severity due to Heat Damage from Gangwon Large Fire Area in 2019 (2019년 강원도 대형산불지역의 열해 피해로 인한 피해강도 변화 탐색)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee;Lee, HoonTaek
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1083-1093
    • /
    • 2019
  • The purpose of this study is to detect the burned area change by direct burning of tree canopies and post-fire mortality of trees via analyzing satellite imageries from the Korea multi-purpose satellite-2 and -3 (KOMPSAT-2 and -3) for two large-fires over the Goseong-Sokcho and Gangneung-Donghae regions in April 2019. For each case, the burned area was compared between two dates: the day when the fire occurred and 15-18 days after it. As the results, within these two dates, there was no substantial difference in burned area of sites whose severities were marked as "Extreme", but sites with "High" and "Low" severities showed significant differences in burned area between the two dates. These differences were resulted from the lagged post-fire browning of canopies which was detected by images from in-situ observation,satellite, and the unmanned aerial vehicle. The post-fire browning started after 3-4 days and became apparent after 10-15 days. This study offers information about the timing to quantify the burned area by large fire and about the mechanism of post-fire mortality. Also, the findings can support policy makers in planning the restoration of the damaged areas.

Study of a Improvement Plans about Efficient Operation of Korean Volunteer Fire Departments (우리나라 의용소방대의 효율적인 운영에 관한 개선방안 연구)

  • Kim, Hyeong-Do;Lee, Si-Young
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.95-106
    • /
    • 2017
  • This study sought for an improvement plan of overall fire-fighting activities and all kinds of support activities of service for public welfare of Korean Volunteer Fire Departments by utilizing the internal fire administration data and statistical yearbooks of the (Old)Ministry of Public Safety and Security (MPSS), the statistics of the (Old) National Emergency Management(NEMA), and the data of the National Statistical Office (NSO) of 5 years from 2012 to 2016 and drawing the practical problems through the statistical analysis. The results of the study are as follows: First, the quota management system of Volunteer Fire Departments that considers the characteristics of rural areas should be supplemented. Second, the culture and training system to solve internal conflict factors of Volunteer Fire Departments should be strengthened. Third, management members readership competency of operating organizations including volunteer fire marshals should be strengthened. Fourth, the education and training system of Volunteer Fire Departments to satisfy regional conditions should be established. Fifth, the reward system for Volunteer Fire Departments' activities of large disaster sites should be improved. The result of the study will be expected to be utilized as the basic data to develop Korean Volunteer Fire Departments in the future.

Study of the Risk of Ignition due to Internal Combustion Engines in Areas with Potentially Explosive Gas Atmospheres (잠재적 폭발위험장소에서 내연기관에 의한 점화 위험성에 관한 연구)

  • Kim, Yun Seok;Rie, Dong Ho
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • Safety management in hazardous areas with potentially explosive gas atmospheres (here in after referred to as hazardous areas) in large scale facilities dealing with combustible or flammable materials at home and abroad is very important (significant) for the coexistence of the company and local society based on business continuity management (BCM) and reliance. For the safety management in hazardous areas, two systems are mainly used: (1) the control system for the prevention of combustible or flammable substances and (2) the explosion proof system for the elimination of ignition sources when flammable gases are leaked to inhibit the transition to fire or explosion accidents. While technology and regulations on explosion proof facilities or devices for electrical ignition sources are well developed and defined, those for thermal ignition sources need to be more developed and established. In this study, the internal combustion engine in hazardous areas was investigated to determine the risk of ignition. For this purpose, document searches were conducted on the relevant international standards and accidents cases and risk analysis reports. In addition, this study assessed the application cases of the diesel engine's safety equipment, such as spark arresters regarding the site of process safety management (PSM) system in central Korea. To practically apply these results to the hydrocarbon industry, the safety management method for explosion prevention in hazardous areas was provided by risk identification for ignition sources of internal combustion engines, such as diesel engines.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

A Study on Safety Assessment of the Evacuation at the Large-scale Amusement Facilities (대규모 위락시설의 피난안전성능 평가에 관한 연구)

  • Park, Bong-Rae;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.165-173
    • /
    • 2009
  • As the Performance Based Fire Protection Design is legislated, studies on a fire and evacuation are actively in progress. The Performance Based Fire Protection Design should be developed toward enlarging the Life safety. In addition, the Performance Based Fire Protection Design shall not merely review the aspects of fire fighting but it shall also include regulations pertaining to evacuation stipulated in laws and regulations for buildings. This study performed an evacuation time prediction based on OO Night Club, one of the multiplex use facilities located in Gwang-ju Metropolitan City in order to suggest as a referential data for the Performance Based Fire Protection Design implementation. To do this, I investigated domestic and foreign regulations and research papers related to evacuation and went to visit the actual site and collected materials. The collected data was then used as ones to input in Simulex, an evacuation program to measure evacuation time. The collected data was then used as data to input in Simulex, an evacuation program to measure evacuation time. Through this particular research and results, the study was able to suggest a few concerning areas.

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

Evaluation of Vulnerability on Rural Emergency Relief Service using Text Mining (Text Mining 기법을 활용한 농촌마을 긴급구호서비스 접근 취약성 평가)

  • Woo, Jaehyeong;Park, Jinseon;Yoon, Seongsoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • The rural areas are large residential space with fewer people than urban areas. That is why they are vulnerable to social services such as health care and security. This research analyzed the vulnerability of emergency relief service in rural village through text mining and the weighting value have been calculated. Based on the calculated statistics data, the police facilities are the most important, While the fire fighting and hospital facilities are important as well. In addition, the distance from the emergency relief service facility to the rural village was confirmed by using Open API. By combining these results, The vulnerable areas of the rural villages and the emergency relief service facilities were calculated and classified into 5 levels. For rural areas, the 1st class will have 33 places, following by 1,179 in 2nd class, 199 in 3rd class, 17 in 4th class and 8 in 5th class. Hence in order to further supplement the vulnerable areas to emergency relief service in villages, geographical relocation and policy approach of emergency relief service facilities are necessary.

A Study on the Visibility Measurement of CCTV Video for Fire Evacuation Guidance (화재피난유도를 위한 CCTV 영상 가시도 측정에 관한 연구)

  • Yu, Young-Jung;Moon, Sang-Ho;Park, Seong-Ho;Lee, Chul-Gyoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.12
    • /
    • pp.947-954
    • /
    • 2017
  • In case of a fire in urban large structures such as super high-rise buildings, evacuation guidance must be provided to the occupants in order to minimize human deaths and injuries. Therefore, it is essential to provide emergency evacuation guidance when a major fire occurs. In order to effectively support evacuation guidance, it is important to identify major items such as fire location, occupant position, escape route, etc. Also, it is important to quickly identify evacuation areas where residents can safely evacuate from a fire. In this paper, we analyze the CCTV video and propose a method of measuring visibility of the evacuation zone from the smoke caused by the fire in order to determine the safety of evacuation area. To do this, we first extract the background video from the smoke video to measure the visibility of the specific area due to smoke. After generating an edge-extracted image for the extracted background video, the degree of visibility is measured by calculating the change in the edge strength due to smoke.