• Title/Summary/Keyword: Large vessel

Search Result 662, Processing Time 0.029 seconds

A Study on Space Planning of Passenger Accommodation Area in Large Cruise Ship (대형 크루즈 선박의 승객거주구역 공간계획에 관한 연구)

  • 이한석;박명규;한창용
    • Korean Institute of Interior Design Journal
    • /
    • no.23
    • /
    • pp.9-16
    • /
    • 2000
  • year in Europe and Asia. Therefore the introduction of new ships continues at a great rate. There is a definite trend toward either large ships or smaller, more luxurious vessels in cruise industry. The day to design and build the large cruise vessel is coming to Korean shipyards, sooner or later. The most important thing to design large cruise vessel is to have a correct comprehension about the feature of cruise vessel, especially of the passenger accommodation area in cruise vessel. This paper is on the spatial features of the passenger accommodation area in cruise vessel. General arrangement drawings, deck plans and technical data of the newest large cruise ships are analysed to understand the spatial features and induce the direction of space planning of passenger accommodation area for the large cruise ship of tomorrow.

  • PDF

Simulation Studies for Noninvasive Optical Measurements of Blood-Scattering Changes in a Skin Model with a Large Blood Vessel

  • Zephaniah, Phillips V;Paik, Seung-ho;Nam, Jungyong;Chang, Ki Young;Jung, Young-Jin;Choi, Youngwoon;Lee, Joonhyung;Kim, Beop Min
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 2019
  • Monte Carlo simulations were performed for a three-dimensional tissue model with and without an embedded large vessel, to understand how varying vessel geometry affects surface light distribution. Vessel radius was varied from 1 to 5 mm, and vessel depth from 2 to 10 mm. A larger difference in surface fluence rate was observed when the vessel's radius increased. For vessel depth, the largest difference was seen at a depth of approximately 4 mm, corresponding to human wrist region. When the vessel was placed at depths greater than 8 mm, very little difference was observed. We also tested the feasibility of using two source-detector pairs, comprising two detectors distinctly spaced from a common source, to noninvasively measure blood-scattering changes in a large vessel. High sensitivity to blood-scattering changes was achieved by placing the near detector closer to the source and moving the far detector away from the source. However, at longer distances, increasing noise levels limited the sensitivity of the two-detector approach. Our results indicate that the approach using two source-detector pairs may have potential for quantitative measurement of scattering changes in the blood while targeting large vessels near the human wrist region.

Longitudinal Penetration of Water through the Vessel and Wood Fiber in Castanea crenata

  • Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2008
  • An experiment was conducted to know ultra-pure distilled water penetration depth through large vessel, small vessel, latewood fiber and earlywood fiber in longitudinal direction of Castanea crenata. In heartwood, latewood fiber transported water more than large and small vessel. While in sapwood, small vessel conduction depth was found the highest. Penetration depth of water after 15.0 seconds, no significant difference was observed among earlywood fiber, latewood fiber and earlywood vessel. Whilst in heartwood, no statistical difference was observed among earlywood fiber, latewood fiber and earlywood vessel. At the beginning, the speed of water penetration was high and then gradually decreased.

  • PDF

An Investigation of Thermal Margin for External Reactor Vessel Cooling(ERVC) in Large Advanced Light Water Reactors(ALWR)

  • Park, Jong-Woon;Jerng, Dong-Wook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.473-478
    • /
    • 1997
  • A severe accident management strategy, in-vessel retention corium through external reactor vessel cooling(ERVC) is being studied worldwide as a means to prevent reactor vessel failure following a core melt accident. An evaluation of feasibility of this ERVC for a large Advanced Light Water Reactor (ALWR) is presented. To account for the coolability of corium and metal in the reactor vessel, a thermal analysis is performed using an existing method. Results show that the peak heat flux along the inner surface of the reactor vessel lower head has a relatively smaller margin than a small capacity reactor such as AP600 in regards with the critical heat flux attainable at the outer surface of the reactor vessel lower head.

  • PDF

A Study on Standard Process and Environmental Analysis in Ship Repair Workshop (선박 수리작업장의 표준공정 및 환경 분석에 관한 연구)

  • Jeon, Chang-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.899-908
    • /
    • 2021
  • It is expected that the global market for vessel repair and remodeling will grow up to the scale of about 25 billion dollars by 2023. Korea's shipbuilding industry is leading the world with its international competitiveness in design and production technology. The actual status of vessel repair industry, however, is poor as there are only two or three companies for vessel repair that can deal with large vessels in the area of Gyeongnam. The reason is that civil complaints are filed severely about environmental problems and environment-related regulations are so strict that it is fairly hard to get governmental approval for the operation of a vessel repair workplace. Domestic vessel repair companies mainly target small- and medium-sized vessels. There are only few workplaces that can carry out regular examination or repair work on large vessels such as LNG vessels, and due to the high price of vessel repair, most of the domestic repair work on large vessels including LNG vessels tends to be snatched by markets in Southeast Asia or China. Despite the tremendous domestic demand of Korea that has established the world's first shipbuilding industry and world's sixth biggest harbor infrastructure, its vessel repair industry can be said to be in very poor condition. In order to vitalize vessel repair industry, this study is aimed to analyze the environmental influence of vessel repair workplaces in Gyeongnam where vessel repair companies are concentrated and suggest standard processes by analyzing vessel repair processes precisely.

Design of a Dynamic Absorber for the Large-Size Pressure Vessel of the Petrochemical Plant (석유화학 플랜트의 대형 압력용기에 대한 동흡진기의 설계)

  • Kim, Min-Chul;Lee, Boo-Youn;Kim, Won-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.743-749
    • /
    • 2005
  • In this work, two dynamic absorbers are introduced and designed to reduce the vibration of the large-size pressure vessel of a reactor for a petrochemical plant. The vibration modes and harmonic responses of the vessel are firstly analyzed by the finite element method. On the basis of the analyzed results, two dynamic absorbers are designed by a simple design theory. Furthermore, an optimization process is executed and an optimal design of the dynamic absorber is obtained to improve performance and structural safety of the vessel. As a result, the maximum displacement and stress of the vessel is decreased about 85% and 65% respectively, the design criteria being satisfied.

  • PDF

Optimal Design of a Dynamic Absorber for the Large-size Pressure Vessel of the Petrochemical Plant (석유화학 플랜트의 대형 압력용기에 대한 동흡진기의 최적설계)

  • Kim, Min-Chul;Lee, Boo-Youn;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.612-619
    • /
    • 2005
  • In this work. two dynamic absorbers are introduced and designed to reduce the vibration of the large-size pressure vessel of a reactor for a petrochemical plant. The vibration modes and harmonic responses of the vessel are firstly analyzed by the finite element method. On the basis of the analyzed results, two dynamic absorbers are designed by a simple design theory. Furthermore, an optimization process is executed and an optimal design of the dynamic absorber is obtained to improve performance and structural safety of the vessel. As a result, the maximum displacement and stress of the vessel is decreased about $85\%$ and $65\%$ respectively, the design criteria being satisfied.

Impregnation of Castanea creanata Wood by Hydrophobic Oil

  • Ahmed, Sheikh Ali;Lee, Kyoung-Min;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.91-96
    • /
    • 2008
  • This paper investigates the penetration of essential oil into radial and longitudinal directions of Castanea crenata. Present study was performed to know the essential oil penetration depth in radial and longitudinal direction of Castanea crenata. Essential oil penetration depth was found higher in longitudinal direction than in radial direction and it was about 53 times high at 15.0 second of penetration. In early wood, fiber conducted oil more than that of large vessel. In heartwood, fiber had played an important role for the conduction of oil. But in sapwood, small vessel conducted oil deeper than wood fiber, which was also significantly different from large. On the other hand, large vessel in heartwood had statistically lower penetration depth than that of fiber and small vessel. At the beginning of penetration the speed was high and gradually decreased in course of time.

  • PDF

Thermal stress analysis of the KSTAR vacuum vessel during bake-outs (KSTAR 진공용기의 베이킹시 열응력해석)

  • 인상렬;윤병주;조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.285-292
    • /
    • 1998
  • The vacuum vessel of the KSTAR tokamak has a so large poloidal cross- section that workers can enter into the inside the vessel. To produce a clean plasma with low impurity concentrations it is planned that the whole vessel including plasma facing components will be baked out at $350^{\circ}C$ and the base pressure of the vessel will be kept in the range of ultra high vacuum. Large thermal stresses are expected during bake-outs to a three-dimensionally complex structure of the vessel, consequent ununiformity of the temperature distribution and support systems to resist forces acting on the vessel. In this report variations of the thermal stress according to temperature gradients on the vessel and constraint conditions of supporting structures are studied and some possible counterplans are discussed.

  • PDF