• Title/Summary/Keyword: Large synchronous motor

Search Result 95, Processing Time 0.025 seconds

Optimal Design of a High-Speed Linear Synchronous Motor in a Dynamic Tester for Catenary Current Collection (전차선로-집전계 주행시험기 추진용 고속 선형동기전동기의 최적설계)

  • Lee, Hyung-Woo;Kwon, Sam-Young;Lee, Byung-Song;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.665-674
    • /
    • 2006
  • This paper presents the optimal design of a high-speed (200[km/h]) Linear Synchronous Motor which will be used as a propulsion system of a dynamic tester for catenary-current collection used in railways. Motor performance, especially detent force minimization on various design schemes has been investigated in detail by using FEM (Finite Element Method). Simulation-based DOE (Design of Experiments) method is also applied in order to reduce the large number of analysis according to each design variable and consider the effect among variables. The optimal design in all aspects is proposed by an optimization algorithm using a regression equation derived from the simulation-based DOE and the performance is verified by FEM.

  • PDF

A Study on the Voltage Drop of Induction Generator along the Rotor Shape (회전자 형상에 따른 유도발전기 전압강하에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Induction generator is easy to durability and maintenance than the synchronous generator. So, recently Induction generator has been widely applied to small-scale hydroelectric power plant. When the rotor is operating faster than synchronous speed, induction machine can generate electric power. Induction generator has a large inrush currents, such as the starting current of the induction motor. Induction motor has been designed a variety of rotor shape in order to reduce starting current. Since the occurrence of high inrush current cause a voltage drop to the system, it will need to reduce possible. Because the starting current of the squirrel-cage induction motor varies in accordance with the rotor shape, it is necessary to analyze the magnitude of inrush current in order to apply to the generator. In this study, we analyzed the inrush current and the voltage drop caused in accordance with the rotor shape of 1500kw induction generator.

Conceptual Design of a 5 MW HTS Motor (5 MW 고온초전도 모터 설계)

  • Baik, S.K.;Kwon, Y.K.;Kim, H.M.;Lee, J.D.;Kim, Y.C.;Park, H.J.;Kwon, W.S.;Park, G.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.36-42
    • /
    • 2008
  • The superconducting motor shows several advantages such as smaller size and higher efficiency against conventional motor especially utilized in ship propulsion application. However, this size reduction merit appears in large capacity more than several MW. We are going to develop a 5MW class synchronous motor with rotating High-Temperature Superconducting (HTS) coil. that is aimed to be utilized for ship propulsion so it has very low-speed, The ship propulsion motor must generate very high electromagnetic torque instead of low-speed. Therefore. the rotor (field) coils need very large magnetic flux that results in large amount of expensive HTS conductor for the field coil. In this paper a 5MW HTS motor for ship propulsion is considered to be designed with construction cost reduced via HTS field coil cost reduction because HTS conductor cost is critical factor in the construction cost of HTS motor. In order to reduce the HTS conductor amount. iron-cored rotor types are considered. so several cases with iron-core are compared one another and with an air-core case.

A Study of Regeneration Breaking Control Algorithm for Wounded-field Synchronous Motor Drive (대용량 동기 발전 전동기의 회생 제동 제어 알고리즘에 관한 연구)

  • Ryu, Ho-Seon;Lee, Joo-Hyun;Lim, Ik-Hun;Park, Yo-Jip;Kang, Youn-Jong;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.104-112
    • /
    • 2006
  • SFC(Static Frequence Converter)system has come to be used as drive large synchronous machine in many industry applications. Many papers have been presented on the control algorithm of SFC system, not the acceleration and start-up but the rated speed operation with line connection and the braking operation with regeneration which is used in the industry. Among this, this paper presents the regeneration breaking control algorithm for a large synchronous machine using SFC system. The results of experiment show that the proposed algorithm is proper and effective.

Analysis of Detent Force Reduction Method in a Permanent Magnet Linear Synchronous Motor

  • Jang, Seok-Myeong;Yoon, In-Ki;Lee, Sung-Ho;Kang, Do-Hyun;Jeong, Yeon-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The severe problem in improving the positioning precision of a permanent magnet linear synchronous motor (PMLSM) is the large detent farce caused by the permanent magnet arrangement. It is generally an undesired effect that contributes to the torque ripple, vibration and noise of machine. The detent force is arisen from the difference of the position of a permanent magnet end and a tooth position. In this paper, the four methods to reduce detent force were studied and analyzed. The methods are adjusting the width of permanent magnet, varying the shape of armature teeth, relocating the permanent magnet, and adjusting the width of permanent magnet and relocating the permanent magnet at the same time. To analyze the detent farce according to flour methods, a two-dimensional Finite Element Analysis [FEA] was used and we compared with the ratio of reduction of the detent farce according to the flour methods.

3D Field Analysis And Circuit Parameter Calculation of Superconducting Homopolar Synchronous Motor (전초전도 호모폴라 모터의 3차원 자계해석 및 회로상수 추출)

  • Cho, Young-Han;Sung, Tan-Il;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.700_701
    • /
    • 2009
  • In comparison with conventional motors, Superconducting Homopolar Synchronous Motors (SHSMs) have advantages that it generates high magnetic field by superconducting winding. Therefore, superconducting coil used in SHSM can reduce the motor size and enhance the motor efficiency for high torque applications under the space constraints for propulsion system. During the design process of SHSM, it is required to evaluate the performance of initial design model, that is accurately analyzed using 3D magnetic field modeling large air-gap and flux distribution of axial direction is properly taken into account. In this paper, we analyze magnetic field of a homopolar motor with a 4-pole homopolar rotor and a stator of 3 phase windings. The field analysis is done using 3D finite element analysis which can reflect the end effect and overhang winding. And we extract mutual inductances between a rotor wind and the 3 stator windings. The extracted inductances are used for evaluation of overall motor performances that are calculated with generalized circuit theory of electrical machines.

  • PDF

Performance of the Squirrel Cage Induction Motor with High Temperature Superconducting Rotor Bars at Stable Operating Region (고온초전도단락봉을 사용한 농형유도전동기의 안정영역 특성)

  • 심정욱;차귀수;이지광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.442-447
    • /
    • 2003
  • Motors with HTS wires or bulks have been developing recently. Those are large synchronous motor with HTS wires at the field winding in the rotor, hysteresis and reluctance motors with HTS bulk in the rotor. This paper presents the fabrication and test results of an HTS induction motor. Conventional end rings and short bars were replaced with HTS wires in the motor. Stator of the conventional induction motor was used as the stator of the HTS motor. Rated capacity and rpm at full rotor of the conventional motor were 0.75[kW] and 1,710[rpm]. Two, HTS wires are used in parallel to make the end rings and bars. The critical current of the BSCCO-2223 HTS wire which was used in the bars and end rings were 115[A]. Electrodynamometer was coupled directly to the shaft of the rotor with HTS wires.

Design Considerations of HTS Synchronous Motor arranged with Magnetic Core inside of Magnet Vessel (회전자 내부에 철심을 배치한 고온초전도모터 설계 방안)

  • 백승규;김석환;손명환;서무교;조영식;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.215-218
    • /
    • 2002
  • HTS motors and generators have some advantages over LTS machines because of higher operating temperature. Very low temperature nakes LTS machines need higher refrigeration cost and large facilities. However, HTS machines are expected to be comparable with conventional counterparts at smaller machine ratings than LTS generators in terms of efficiency and size. As the operating temperature increases, the magnetic flux density generated by HTS field coils decreases relatively. For example, 1000hp HTS synchronous motor developed in a few years ago has maximum field density of 1.5T. At this point, magnetic material used in conventional machines is able to pass magnetic flux easily with high permeability. In order to investigate the effect, we arranged magnetic core only inside of magnet vessel of a 100hp target machine. By way of FEM analysis, we concluded that the magnetic core can reduce amount of expensive BSCCO conductor so much.

  • PDF

Comparison of Three Magnet Array-type Rotors in Surface Permanent Magnet-type Vernier Motor

  • Kataoka, Yasuhiro;Takayama, Masakazu;Matsushima, Yoshitarou;Anazawa, Yoshihisa
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Surface permanent magnet-type vernier motors with three magnet array-type rotors (parallel magnetized type, repulsion type, and Halbach type) are compared based on the pull-out torque. It was clarified that increasing the rotor radius increases the pull-out torque at a fixed three-phase alternating voltage. The mechanism for the pull-out torque increase on each magnet array type was different, when the effects of the increase were analyzed based on an induced electromotive force and a synchronous reactance. As a result, the design of the Halbach-type rotor was found to be especially effective for achieving high pull-out torque, because this array type achieves a large induced electromotive force $E_0$ and a small synchronous reactance $x_s$.

Analysis of the Reduction of Detent Force in a Permanent Magnet Linear Synchronous Motor (영구자석형 선형 동기전동기의 디텐트력 저감방식에 관한 특성해석 및 상호 비교)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.757-759
    • /
    • 2000
  • The problem in improving the positioning precision of a permanent magnet linear synchronous motor(PMLSM) is the large detent force caused by the permanent magnet. The detent force is thought to arise from the difference of the position of a permanent magnet end and a tooth position. In this paper, Three methods of reducing detent force is presented The first method is adjusting the width of permanent magnet. The second method is varying the shape of armature teeth. The third method is the arrangement of the permanent magnet end. This paper compares with the ratio of reducing the detent force according to the three methods.

  • PDF