• 제목/요약/키워드: Large strain

검색결과 1,570건 처리시간 0.033초

Rat의 DNA Polymerase$\beta$ cDNA가 도입된 Transgenic Drosophila의 체세포 돌연변이 유발에 관한 연구 (Hypersensitivity of Somatic Mutations and Mitotic Recombinations Induced by Mutagens in Transgenic Drosophila bearing Rat DNA Polymerase $\beta$)

  • 최영현;유미애;이원호
    • 한국환경성돌연변이발암원학회지
    • /
    • 제15권2호
    • /
    • pp.100-105
    • /
    • 1995
  • The effects of DNA polymerase $\beta$ on the somatic chromosome mutations and mitotic recombinations were investigated using the transgenic Drosophila beating chimetic gene consisting of a promoter region of Drosophila actin 5C gene and rat DNA polymerase $\beta$. For detecting the somatic chromosome mutations and mitotic recombinations, the heterozygous (mwh/+) strains possessing or lacking transgene poi 13 were used. The spontaneous frequency of small mwh spots, due to deletion or nondisjunction etc., in the non-transgenic w strain and the transgenic p[pol $\beta$]-130 strain was 0.351 and 0.606, respectively. The spontaneous frequency (0.063) of large mwh spots, arises mostly from somatic recombination between the centromere and the locus mwh, in the transgenic p[pol $\beta$]-130 strain was about three times higher than that (0.021) of the non-transgenic w strain. The mutant clone frequencies of small and large mwh spots induced by N-methyl-N'-nitro-N-nitrosoguanidine and ethyl methanesulfonate in the transformant p[pol $\beta$]-130 were higher than those in the host strain w. The present results suggest that rat DNA polymerase $\beta$ participate at least in the somatic chromosome mutations and mitotic recombination processes.

  • PDF

대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구 (A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures)

  • 하윤석
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

Bi-2223/Ag 고온 초전도 선재 변형에 따른 입계전류 특성 (Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain)

  • 하홍수;오상수;하동우;심기덕;김상철;장현만;권영길;류강식
    • 한국전기전자재료학회논문지
    • /
    • 제14권1호
    • /
    • pp.69-73
    • /
    • 2001
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT(Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It is inevitable to deform the superconducting taps with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

V 첨가강의 고온변형시 석출 및 재결정에 관한 연구 (Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation)

  • 조상현;김성일;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Bi-2223/Ag 고온초전도 선재의 변형에 따른 임계전류 특성 (Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain)

  • 하홍수;오상수;하동우;심기덕;김상철;배성우;권영길;류강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.810-813
    • /
    • 2000
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT (Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It's inevitable to deform the superconducting tapes with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

미량원소첨가강의 석출 및 재결정에 의한 제어변형 (Controlled Deformation of Microalloyed Steel by Precipitation and Recrystallization)

  • 조상현;김성일;유연철
    • 소성∙가공
    • /
    • 제6권2호
    • /
    • pp.102-109
    • /
    • 1997
  • The multistage deformation and stress relaxation were carried out to investigate the strain induced precipitation by torsion tests in the range of 1000~80$0^{\circ}C$, 0.05~5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests. The distribution of precipitates increased, as the strain rate increased and the mean size of precipitates was found to be about 10~30nm. The precipitation starting time$(P_s)$ decreased with increasing strain rate and the amount of pre-strain. The effect of deformation conditions on the no-recrystallization temperature$(T_nr)$ was also determined in the multistage deformation. $T_nr$ Tnr decreased with increasing the strain and strain rate. In the controlled rolling simulation, grain refinement and precipitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구 (The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA)

  • 이승우;송흥섭;문갑태
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석 (A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution)

  • 정호승;조종래;박희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.